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Chapitre 1

Polynôme du second degré
Définition 1.1 : (Polynôme du second degré)

On appelle polynôme du second degré un fonction de R qui peut s’écrire sous la forme dévloppée :

∀x ∈ R, f(x) = ax2 + bx + c

avec a ∈ R∗, b ∈ R et c ∈ R.

a, b et c peuvent être connus ou inconnus et il faut bien comprendre que la notation « f(x) » nous informe que c’est

x la variable.

Les termes ax2, bx et c sont appelés monôme. Et donc ax2 + bx + c est aussi appelé trinôme (il y a 3 monômes).

La valeur a est appelée coefficient dominant de f .

L’ensemble des polynômes du second degré est noté P2[R].

Exemple :

Les fonctions suivantes sont des polynômes du second degré :

f(x) = 2x2 − 3x + 1 car a = 2 ; b = −3 ; c = 1 donc f ∈ P2[R]

g(x) = −x2 + 4x − 3 car a = −1 ; b = 4 ; c = −3 donc g ∈ P2[R]

h(x) = (x − 2)(x + 1) car un monôme en x2 non nul va apparaître après dévloppement. Donc h ∈ P2[R]

k(x) =
√

2x2 −
√

3x car a =
√

2 ; b = 0 ; c = −
√

3 donc k ∈ P2[R]

Les fonctions suivantes ne sont pas des polynômes du second degré :

l(x) = 4x − 2 car a = 0 et il faut que a ∈ R∗. Donc l /∈ P2[R]

m(x) =
√

3x2 − 2x + 5 car la racine carrée transforme les monômes. Donc m /∈ P2[R]

n(x) = 3x

−7x2 + 2x − 1 car la fonction inverse transforme les monômes du dénominateur. Donc n /∈ P2[R]

Définition 1.2 : (Forme canonique d’un polynôme du second degré)
Soient a ∈ R∗, b ∈ R, c ∈ R et f ∈ P2[R] un polynôme du second degré, défini par f(x) = ax2 + bx + c.

On appelle forme canonique de f l’écriture de f sous la forme :

∀x ∈ R, f(x) = a(x − α)2 + β

avec α ∈ R et β ∈ R. (Ces lettres se lisent « alpha » et « bêta ». Voir l’alphabet grec.)

Preuve :
Soit f un polynôme du second degré, défini par sa forme dévloppée f(x) = ax2 + bx + c.

On souhaite montrer qu’il existe trois réels α, β et a tels que :

f(x) = a(x − α)2 + β

Développons le membre de droite :

a(x − α)2 + β = a(x2 − 2αx + α2) + β = ax2 − 2aαx + aα2 + β
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En identifiant les coefficients des monômes avec ceux de la forme dévloppée de f(x), on obtient le système suivant :−2aα = b

aα2 + β = c

De la première équation, on tire que α = − b
2a . En substituant cette valeur dans la deuxième équation, on obtient :

β = c − aα2 = c − a

(
− b

2a

)2
= c − a

b2

4a2 = 4ac

4a
− b2

4a
= 4ac − b2

4a

Ainsi, on a trouvé les valeurs de α et β en fonction de a, b et c.

Conclusion :

Tout polynôme du second degré f(x) = ax2 + bx + c peut s’écrire sous la forme canonique :

f(x) = a

(
x + b

2a

)2
+ 4ac − b2

4a

Ce qui achève la démonstration.

Exemple :

∗ Soit f(x) = 3x2 − 6x + 5.

Pour mettre f sous forme canonique, on complète le début de l’identité remarquable a2 − 2ab + b2. Cette

technique de calcul s’appelle la méthode de complétion du carré :

f(x) = 3
(
x2 − 2x

)
+ 5

= 3
(
x2 − 2x + 0

)
+ 5

= 3
(

x2 − 2x + 12︸ ︷︷ ︸
a2−2ab+b2

−12
)

+ 5

= 3
(
(x − 1)2 − 1

)
+ 5

= 3 (x − 1)2 − 3 + 5

= 3 (x − 1)2 + 2

Donc, la forme canonique de f est f(x) = 3(x − 1)2 + 2.

∗ Soit g(x) = −2x2 + 8x − 3.

Pour mettre g sous forme canonique, on utilise la méthode de complétion du carré avec l’identité remarquable

a2 − 2ab + b2 :

g(x) = −2
(
x2 − 4x

)
− 3

= −2
(
x2 − 4x + 22 − 22)

− 3

= −2
(

(x − 2)2 − 4
)

− 3

= −2 (x − 2)2 + 8 − 3

= −2 (x − 2)2 + 5

Donc, la forme canonique de g est g(x) = −2(x − 2)2 + 5.

∗ Soit h(x) = 5x2 + 10. On a automatiquement :

h(x) = 5 (x − 0)2 + 10

Dans ce cas, la forme canonique est identique à la forme développée : h(x) = 5x2 + 10.
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Proposition 1.3 : (Extremum, Variation d’un polynôme du second degré)
Soient a ∈ R∗, b ∈ R, c ∈ R et f ∈ P2[R] une fonction polynôme du second degré définie par f(x) = ax2 + bx + c.

Si a > 0 :

La fonction f admet un minimum en x = − b

2a
.

Elle est strictement décroissante sur
]
−∞; − b

2a

]
et strictement croissante sur

[
− b

2a
; +∞

[
.

Si a < 0 :

La fonction f admet un maximum en x = − b

2a
.

Elle est strictement croissante sur
]
−∞; − b

2a

]
et strictement décroissante sur

[
− b

2a
; +∞

[
.

Preuve :
A faire quand j’aurai pas la flemme.

Exemple :

Cas a > 0 :

−2 2 4

−4

−2

2

4 Cf

−b
2a

minimum

x

y Soit f(x) = x2 − 2x − 2.

On remarque que a = 1 > 0.

La courbe représentative de f ci-contre montre bien une courbe stric-

tement décroissante jusqu’à x = − b
2a = − −2

2×1 = 1 et qu’ensuite elle

est strictement croissante.

Donc elle admet bien un minimum en x = 1.

Cas a < 0 :

−4 −2 2

−4

−2

2

4

Cg

−b
2a

maximum

x

y Soit g(x) = −x2 − 2x + 27
10 .

On remarque que a = −1 < 0.

La courbe représentative de g ci-contre montre bien une courbe stricte-

ment croissante jusqu’à x = − b
2a = − −2

2×(−1) = −1 et qu’ensuite elle

est strictement décroissante.

Donc elle admet bien un maximum en x = −1.

Définition 1.4 : (Sommet d’un polynôme du second degré)
On appelle sommet d’un polynôme du second degré le point de la parabole représentant ce polynôme qui

correspond à son extremum (maximum ou minimum).
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Exemple :

Le sommet des polynômes du second degrés f et g suivants sont représentés par le point S sur leur courbe

représentative :

−2 2 4

−4

−2

2

4
Cf

S

x

y

−4 −2 2

−4

−2

2

4

Cg

S

x

y

Proposition 1.5 : (Coordonnées du sommet d’un polynôme du second degré)
Soient a ∈ R∗, b ∈ R, c ∈ R, α ∈ R, β ∈ R et f ∈ P2[R] un polynôme du second degré dont :

∗ la forme dévloppée est : f(x) = ax2 + bx + c

∗ la forme canonique est : f(x) = a(x − α)2 + β

Soit S le sommet de Cf de coordonnées (xS ; yS). On a la propriété suivante :

∗ si f est sous forme dévloppée : xS = − b
2a

yS = f (xS) = f
(
− b

2a

)
∗ si f est sous forme canonique : xS = α

yS = β

Dans tous les cas, on a :

S (xS ; yS) = S (α; β) = S

(
− b

2a
; f

(
− b

2a

))

Preuve :
A faire quand j’aurai pas la flemme.

Exemple :

Soit P (x) = x2 − 4x + 7 un polynome du second degré.

1. Calculer avec la forme dévloppée de P les coordonnées du sommet S.

2. Mettre la fonction P sous la forme canonique.

3. En déduire les coordonnées du sommet S de P .

4. Que remarque-t-on ?

1. D’après la propriété 1.5, on peut calculer les coordonnées de S de la façon suivante :xS = − b
2a = − −4

2×1 = 2

yS = P (xS) = P
(
− b

2a

)
= P

(
− −4

2×1

)
= P (2) = 22 − 4 × 2 + 7 = 3
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2. On commence par identifier avec quelle identité remarquable on pourra potentiellement "forcer son passage".

Rapel : cette méthode s’appelle la méthode de complétion du carré.

La partie −4x nous indique clairement que l’identité remarquable a2 − 2ab + b2 est un bon candidat car elle

ressemble fortement à −2ab.

De plus x2 ressemble fortement à a2 de l’identité remarquable.

En modifiant un peu l’écriture de P , on peut commencer à faire apparaître a et b dans P :

P (x) = x2 − 4x + 7

= x2 − 2 × 2 × x + 7

Ainsi il est claire que pour l’identité remarquable a2 − 2ab + b2 on identifie facilement a et b :

a = x

b = 2

Il ne reste plus qu’à faire apparître b2 dans P pour "forcer le passage" de l’identité remarquable :

P (x) = x2 − 2 × 2 × x + 7

= x2 − 2 × 2 × x + 0 + 7

= x2 − 2 × 2 × x + 22︸ ︷︷ ︸
a2−2ab+b2

− 22 + 7

= (x − 2)2 − 22 + 7

= (x − 2)2 − 4 + 7

= (x − 2)2 + 3

3. Ainsi a(x − α)2 + β = (x − 2)2 + 3 donc α = 2 et β = 3 donc d’après la proposition 1.5 les coordonnées du

sommet S de P sont (α; β) = (2; 3).

4. On remarque que les coordonnées calculées dans 1. sont les mêmes que ceux dans 3.. Ce qui est cohérent car

l’on détermine les coordonnées du même point S de deux manières différentes.

Proposition 1.6 : (Axe de symétrie de la courbe représentative d’un polynôme du second degré)
Soient f ∈ P2[R] et S (xS ; yS) ∈ Cf le sommet de Cf .

Cf admet toujours un axe de symétrie d’équation x = xS .

Preuve :
A faire quand j’aurai toujours pas la flemme.

Exemple :

2 4

2

4

6 CP

xS

S
yS

x

y En reprenant l’exemple précédent avec P (x) = x2 − 4x + 7, on a déjà déterminé

les coordonnées du sommet S de CP qui sont (xS ; yS) = (2; 3).

On en déduit immédiatement d’après la propriété 1.6 que l’équation x = 2 est

l’équation de l’axe de symétrie de P représenté en rouge.

6



Proposition 1.7 : (Tableau de variation d’un polynôme du second degré)
Soient f ∈ P2[R], a ∈ R∗ le coefficient dominant de f et S (xS ; yS) ∈ Cf le sommet de Cf .

Le tableau de variation de f est :

dans le cas où a > 0 :

x −∞ xS +∞

f
−∞

yS

+∞

dans le cas où a < 0 :

x −∞ xS +∞

f
−∞

yS

+∞

Preuve :
A faire quand j’aurai toujours et encore toujours pas la flemme.

Exemple :

−2 2 4

−4

−2

2

4 CP

xS

S
yS

x

y Soit P (x) = x2 − 2x − 2 avec CP représentée ci-contre, on peut par exemple

directement calculer les coordonnées du sommet S de CP avec la forme dévloppée

de P qui sont : xS = − b
2a = − −2

2×1 = 1

yS = P (xS) = P (2) = 22 − 4 × 2 + 7 = 3

Comme le coefficient dominant de P qui est a > 0 , on en déduit immédiatement

d’après la propriété 1.7 que le tableau de variation de P est :

x −∞ 1 +∞

f
−∞

3

+∞

−4 −2 2

−4

−2

2

4

CQ

xS

S yS

x

y Soit Q(x) = −x2 − 2x + 27
10 avec CQ représentée ci-contre, on peut aussi par

exemple d’abord déterminer la forme canonique de Q en utilisant la méthode de

complétion du carré pour ensuite directement avoir les coordonnées du sommet

S de CQ. Ainsi :

Q(x) = −x2 − 2x + 27
10

= −(x2 + 2x + 0) + 27
10

= −(x2 + 2x + 12 − 12) + 27
10

= −
(
(x + 1)2 − 1

)
+ 27

10
= −(x + 1)2 + 1 + 27

10
= −(x + 1)2 + 37

10
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On a donc directement grâce à la propriété 1.5 les coordonées du sommet S :

S (xS ; yS) = S (α; β) = S

(
−1; 37

10

)
Comme le coefficient dominant de Q qui est a < 0 , on en déduit immédiatement d’après la propriété 1.7 que le

tableau de variation de Q est :

x −∞ −1 +∞

f
−∞

37
10

+∞

Définition 1.8 : (Equation du second degré)
Soit f ∈ P2[R].

On appelle équation du second degré toute équation qui peut s’écrire sous la forme :

f(x) = 0

Exemple :

∗ x2 − 5x + 6 = 0 est une équation du second degré. On a bien le membre de gauche qui est un polynôme du

second degré et le membre de droite qui est 0.

∗ 4x2−12x+6 = −3 est aussi une équation du second degré car elle est équivalente à l’équation 4x2−12x+9 = 0.

∗ 3x − 5 = 7 n’est pas une équation du second degré car le monôme en x2 est nul.

∗ 1
2x2 + 6x − 57 = 0 n’est pas une équation du second degré car le terme 1

2x2 n’est pas un monôme.

Définition 1.9 : (Discriminant)
Soient a ∈ R∗, b ∈ R, c ∈ R et f ∈ P2[R], tels que f(x) = ax2 + bx + c.

On appelle discriminant de f la valeur b2 − 4ac. Cette valeur est généralement noté ∆ (se lit « Delta » c’est la

lettre majuscule de δ qui se lit « delta ». Voir alphabet grec). On a donc :

∆ = b2 − 4ac

Exemple :

∗ Pour f(x) = x2 + 2x + 5, on a :

∆f = (2)2 − 4 × 1 × 5 = 4 − 20 = −16

∗ Pour g(x) = 4x2 − 12x + 9, on a :

∆g = (−12)2 − 4 × 4 × 9 = 144 − 144 = 0

∗ Pour h(x) = x2 − 5x + 6, on a :

∆h = (−5)2 − 4 × 1 × 6 = 25 − 24 = 1
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Proposition 1.10 : (Solutions d’une équation du second degré)
Soient a ∈ R∗, b ∈ R, c ∈ R, f ∈ P2[R], tels que f(x) = ax2 + bx + c et ∆ ∈ R le discriminant de f .

Les solutions de f(x) = 0 sont déterminées par 3 cas possibles :

∗ Si ∆ < 0 alors f(x) = 0 n’a pas de solution réelle.

∗ Si ∆ = 0 alors f(x) = 0 a une seule et unique solution qui est :

x0 = −b

2a
.

∗ Si ∆ > 0 alors f(x) = 0 a deux solutions distinctes qui sont :

x1 = −b −
√

∆
2a

et x2 = −b +
√

∆
2a

.

Preuve :
A faire en prio ! Elle est au programme. Mais pour l’instant flemme.

Exemple :

En reprenant l’exemple précédent :

−4 −2 2

2

4

6

8
Cf

x

y Pour f(x) = x2 + 2x + 5, on a ∆f = −16 < 0.

Donc d’après 1.10 l’équation x2 + 2x + 5 = 0 n’a pas de solution réelle.

−1 1 2 3

2

4

6

8 Cg

x0

x

y Pour g(x) = 4x2 − 12x + 9, on a ∆g = 0

Donc d’après 1.10 l’équation 4x2 − 12x + 9 = 0 a une seul solution qui est :

x0 = −b

2a
= − (−12)

2 × 4 = 3
2

On peut vérifier si on n’a pas fait d’erreur. En remplaçant x par x0 dans g(x)

on devrait obtenir un résultat qui vaut 0 :

g (x0) = g

(
3
2

)
= 4

(
3
2

)2
− 12

(
3
2

)
+ 9 = 9 − 18 + 9 = 0

1 2 3 4

1

2 Ch

x1 x2

x

y Pour h(x) = x2 − 5x + 6, on a ∆h = 1 > 0

Donc d’après 1.10 l’équation x2 − 5x + 6 = 0 a deux solutions distinctes qui

sont : 
x1 = −b −

√
∆h

2a
= − (−5) −

√
1

2 × 1 = 5 − 1
2 = 2

x2 = −b +
√

∆h

2a
= − (−5) +

√
1

2 × 1 = 5 + 1
2 = 3

On peut vérifier si on n’a pas fait d’erreur. En remplaçant x par x1 puis par x2

dans h(x) on devrait obtenir un résultat qui vaut 0 :

h (x1) = g (2) = 22 − 5 × 2 + 6 = 4 − 10 + 6 = 0

h (x2) = g (3) = 32 − 5 × 3 + 6 = 9 − 15 + 6 = 0
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Définition 1.11 : (Racine d’un polynôme du second degré)
Soient f ∈ P2[R] et ∆ ∈ R le discriminant de f .

On appelle racine de f une solution de f(x) = 0.

∗ Si ∆ < 0 alors f n’a pas de racine.

∗ Si ∆ = 0 alors la seul solution de f(x) = 0 est appelée racine double de f .

∗ Si ∆ > 0 alors f admet deux racines distinctes.

Exemple :

En reprenant l’exemple précédent et d’après 1.11 :

∗ f n’a pas de racine.

∗ x0 est solution de g(x) = 0. Donc x0 est une racine double de g.

∗ x1 et x2 sont solutions de h(x) = 0. Donc x1 et x2 sont des racines distinctes de h.

Proposition 1.12 : (Somme et produit des racines d’un polynôme du second degré)
Soient a ∈ R∗, b ∈ R, c ∈ R et f ∈ P2[R], tels que f(x) = ax2 + bx + c.

La somme des racines de f est notée Σ (se lit « Sigma », c’est la lettre majuscule de σ qui se lit « sigma », voir

alphabet grec) et a pour valeur −b
a . Autrement dit :

Σ = −b

a

La produit des racines de f est notée Π (se lit « Pi », c’est la lettre majuscule de π qui se lit « pi », voir alphabet

grec) et a pour valeur c
a . Autrement dit :

Π = c

a

Preuve :
A faire. Quoi ? La flemme ? Bah je crois qu’elle est toujours présente.

Exemple :

En reprenant l’exemple précédent et d’après 1.12 :

∗ Pour la fonction f , Σf et Πf existe bien malgré qu’elle n’a pas de racine réelle :
Σf = −b

a
= −2

1 = −2

Πf = c

a
= 5

1 = 5

Cela s’explique avec l’ensemble nombres complexe C. Les racines de f sont dans C et leur somme donne bien

−2 et leur produit donne bien 5 (voir chapitre sur C en Tle).

∗ Pour la fonction g, Σg et Πg existe bien malgré qu’elle a qu’une seul racine. En effet c’est une racine double

donc : 
Σg = −b

a
= −(−12)

4 = 3 = x0 + x0 Rappel : x0 = 3
2

Πg = c

a
= 9

4 = x0 × x0

∗ Pour la fonction h, Σh et Πh on a bien :
Σh = −b

a
= −(−5)

1 = 5 = x1 + x2 Rappel : x1 = 2 et x2 = 3

Πh = c

a
= 6

1 = 6 = x1 × x2
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Proposition 1.13 : (Factorisation d’un polynôme du second degré)
Soient a ∈ R∗, b ∈ R, c ∈ R, f ∈ P2[R], tels que f(x) = ax2 + bx + c et ∆ ∈ R le discriminant de f .

Pour la forme factorisée de f , il y a 3 cas :

∗ Si ∆ < 0 alors f n’a pas de forme factorisée dans R (elle existe dans C, voir en Tle).

∗ Si ∆ = 0 alors soit x0 ∈ R la racine double de f , la forme factorisée de f est :

f(x) = a (x − x0) (x − x0) = a (x − x0)2

∗ Si ∆ > 0 alors soient x1 ∈ R et x2 ∈ R les racines de f , la forme factorisée de f est :

f(x) = a (x − x1) (x − x2)

Preuve :
Soient f ∈ P2[R], l ∈ P2[R], e ∈ P2[R], m ∈ P2[R] et f ∈ P2[R]. On a :

f × l × e × m × m × e = flemme A faire plus tard.

Exemple :

En reprenant l’exemple précédent et d’après 1.13 :

∗ Pour la fonction f , on a ∆f < 0 donc f n’a pas de forme factorisée.

∗ Pour la fonction g, on a ∆g = 0 et x0 = 3
2 . Donc la forme factorisée de f est :

g(x) = a (x − x0)2 = 4
(

x − 3
2

)2

∗ Pour la fonction h, on a ∆h > 0, x1 = 2 et x2 = 3. Donc la forme factorisée de f est :

h(x) = a (x − x1) (x − x2) = (x − 2) (x − 3)

Proposition 1.14 : (Signe d’un polynôme du segond degré)
Soient a ∈ R∗, b ∈ R, c ∈ R, f ∈ P2[R], tels que f(x) = ax2 + bx + c et ∆ ∈ R le discriminant de f .

Le tableau de signes de f est donné par l’un des 3 × 2 cas possibles suivants :

∗ Si ∆ < 0 alors f n’a pas de racine, on a donc le tableau de signes de f qui est :

x

f(x)

−∞ +∞

signe de a

∗ Si ∆ = 0 alors soit x0 ∈ R la racine double de f , on a donc le tableau de signes de f qui est :

x

f(x)

−∞ x0 +∞

signe de a 0 signe de a

∗ Si ∆ > 0 alors soient x1 ∈ R et x2 ∈ R les racines distinctes de f , on a donc le tableau de signes de f :

x

f(x)

−∞ x1 x2 +∞

signe de a 0
signe

opposé de a
0 signe de a

11



Preuve :
Toujours la flemme, à faire plus tard.

Exemple :

∗ Soit f(x) = x2 + 2x + 5. On a :

∆f = 22 − 4 × 1 × 5 = 4 − 20 = −16 < 0

Donc d’après la propriété 1.10, f n’a pas de racine.

Comme a = 1 > 0, on a d’après la propriété 1.14 le

tableau de signes suivant :

x

f(x)

−∞ +∞

+

On peut vérifier en traçant Cf sur un graphique.

Elle se trouve bien au dessus de l’axe des abscisses :

−3 −2 −1 1

2
4
6
8

Cf

x

y

∗ Soit g(x) = −x2 − 2x − 3. On a :

∆g = (−2)2 − 4 × (−1) × (−3) = 4 − 12 = −8 < 0

Donc d’après la propriété 1.10, g n’a pas de racine.

Comme a = −1 < 0, on a d’après la propriété 1.14

le tableau de signes suivant :

x

g(x)

−∞ +∞

−

On peut vérifier en traçant Cg sur un graphique.

Elle se trouve bien en dessous de l’axe des abscisses :

−3 −2 −1 1

−5
−4
−3
−2
−1

Cg

xy

∗ Soit h(x) = x2 − 4x + 4. On a :

∆h = (−4)2 − 4 × 1 × 4 = 16 − 16 = 0

Donc d’après la propriété 1.10, h a une racine double

qui est :

x0 = − (−4)
2 × 1 = 2

Comme a = 1 > 0, on a d’après la propriété 1.14 le

tableau de signes suivant :

x

h(x)

−∞ 2 +∞

+ 0 +

On peut vérifier en traçant Ch sur un graphique.

Elle se trouve bien au dessus de l’axe des abscisses :

1 2 3 4

2

4

Ch

x0 x

y

∗ Soit k(x) = −2x2 + 4x − 2. On a :

∆k = (4)2 − 4 × (−2) × (−2) = 16 − 16 = 0

Donc d’après la propriété 1.10, k a une racine double

qui est :

x0 = −4
2 × (−2) = 1

Comme a = −2 < 0, on a d’après la propriété 1.14

le tableau de signes suivant :

x

k(x)

−∞ 1 +∞

− 0 −

On peut vérifier en traçant Ck sur un graphique.

Elle se trouve bien en dessous de l’axe des abscisses :

−1 1 2 3

−5
−4
−3
−2
−1

Ck

x0 x
y
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∗ Soit l(x) = x2 − 5x + 6. On a :

∆l = (−5)2 − 4 × 1 × 6 = 25 − 24 = 1

Donc d’après la propriété 1.10, l a deux racines

distinctes qui sont :
x1 = −(−5) −

√
1

2 × 1 = 2

x2 = −(−5) +
√

1
2 × 1 = 3

Comme a = 1 > 0, on a d’après la propriété 1.14 le

tableau de signes suivant :

x

l(x)

−∞ 2 3 +∞

+ 0 − 0 +

On peut vérifier en traçant Cl sur un graphique.

Elle se trouve bien au dessus de l’axe des abscisses :

1 2 3 4

2

4

Cl

x1 x2

x

y

∗ Soit m(x) = −x2 + 3x + 4. On a :

∆m = 32 − 4 × (−1) × 4 = 9 + 16 = 25

Donc d’après la propriété 1.10, m a deux racines

distinctes qui sont :
x1 = −3 −

√
25

2 × (−1) = 4

x2 = −3 +
√

25
2 × (−1) = −1

Comme a = 1 > 0, on a d’après la propriété 1.14 le

tableau de signes suivant :

x

m(x)

−∞ −1 4 +∞

+ 0 − 0 +

On peut vérifier en traçant Cl sur un graphique.

Elle se trouve bien au dessus de l’axe des abscisses :

−2 −1 1 2 3 4 5

−4

−2

2

4

6
Cm

x1x2 x

y

∗ Soit l’inéquation x2 + 3x − 5 < −x + 2. Résoudre l’inéquation c’est trouver les solutions de cette inéquation. On

peut d’abord modifier le problème avec des inéquations équivalentes :

x2 + 3x − 5 < −x + 2

⇔ x2 + 3x − 5 + x − 2 < −x + 2 + x − 2

⇔ x2 + 4x − 7 < 0

Ainsi, le problème devient « trouver les valeurs de x tel que x2 + 4x − 7 est négatif ». On peut déterminer les

solutions avec le tableau de signes de x2 + 4x − 7 car ce tableau donnera en particulier les valeurs de x tel que

le trinôme soit négatif.

Il faut donc d’abord calculer le discriminant pour savoir combien il y a de racine :

∆ = 42 − 4 × 1 × (−7) = 44 > 0

Donc il y a deux racines distinctes :
x1 = −4 −

√
44

2 × 1 = −4 −
√

4 × 11
2 = −4 −

√
4 ×

√
11

2 = −4 − 2
√

11
2 = −2 −

√
11

x2 = −4 +
√

44
2 × 1 = −2 +

√
11

On remarque que −
√

11 <
√

11 donc en ajoutant −2 à chaque membre on a −2 −
√

11 < −2 +
√

11 et donc que
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x1 < x2. On peut donc les placer correctement dans l’ordre dans le tableau de signes de x2 + 4x − 7 dont le

coefficient dominant est a = 1 > 0. Ainsi d’après la propriété 1.14 on a :

x

x2 + 4x − 7

−∞ −2 −
√

11 −2 +
√

11 +∞

+ 0 − 0 +

Le tableau de signes de x2 + 4x − 7 nous montre clairement que l’ensemble des solutions de x2 + 4x − 7 < 0

est S =
]
−2 −

√
11; −2 +

√
11

[
.

Mais comme l’inéquation x2 + 4x − 7 < 0 est équivalente à x2 + 3x − 5 < −x + 2 (voir début de l’exemple) donc

l’ensemble des solutions de x2 + 3x − 5 < −x + 2 est aussi S .

∗ Dans cet exemple, une grande partie des calculs sera laissé au lecteur qui doit vérifier les résultats.

Soient f(x) = −x2 + 8x − 11 et g(x) = x − 1. On cherche à déterminer la position de Cf par rapport à Cg.

Par définition de la soustraction, le calcul f(x) − g(x) nous dira quelle fonction est plus grand que l’autre :

Si f(x) − g(x) > 0 alors f(x) > g(x)

Si f(x) − g(x) = 0 alors f(x) = g(x)

Si f(x) − g(x) < 0 alors f(x) < g(x)

On commence donc par déterminer la différence :

f(x) − g(x) = −x2 + 7x − 10

On remarque que f(x) − g(x) est un trinôme donc pour avoir son signe on détermine d’abord son discriminant :

∆f(x)−g(x) = 9 > 0

Donc f(x) − g(x) a deux racines distinctes : x1 = 5

x2 = 2

On remarque que 2 < 5 donc x2 < x1. De plus le coefficient dominant de f(x) − g(x) est a = −1 < 0 donc le

tableau de signes est :

x

f(x) − g(x)

−∞ 2 5 +∞

− 0 + 0 −

On en conclue donc que
∀x ∈ ]−∞; 2[ ∪ ]5; +∞[ , f(x) < g(x)

∀x ∈ ]−∞; 2[ , f(x) > g(x)

∀x ∈ {2; 5}, f(x) = g(x)
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