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Chapitre 1

Polynéme du second degré

Définition 1.1 : (Polynéme du second degré)

On appelle polyndéme du second degré un fonction de R qui peut s’écrire sous la forme dévloppée :
Ve €R, f(x)=az?+br+c

aveca € R*, be R et ceR.

a, b et ¢ peuvent &tre connus ou inconnus et il faut bien comprendre que la notation « f(z) » nous informe que c’est
x la variable.

Les termes az?, bx et ¢ sont appelés mondéme. Et donc ax? + bx + ¢ est aussi appelé trinéme (il y a 3 mondmes).

La valeur a est appelée coefficient dominant de f.

gensemble des polynomes du second degré est noté Py[R].

Exemple :

Les fonctions suivantes sont des polyndémes du second degré :

flz) =222 =3z +1 cara=2; b=-3; ¢c=1donc f € Py[R]

(
(z
(
(

Q

=—2?+42 -3 cara=—-1; b=4; ¢= -3 donc g € P1[R]

hiz) =(x—2)(x+1) car un mondme en 2> non nul va apparaitre aprés dévloppement. Donc h € Py[R]

)
)
)
k(x) = v22? — 3z cara=+v2; b=0; ¢c=—3 donc k € Py[R]
Les fonctions suivantes ne sont pas des polynémes du second degré :

l(x) =4z —2 car a = 0 et il faut que a € R*. Donc | ¢ P3[R]

m(z) = V322 —2x+5  car la racine carrée transforme les mondmes. Donc m ¢ P3[R]

n(x) 3x

= Trrngp T O la fonction inverse transforme les mondmes du dénominateur. Donc n ¢ Ps[R]
o Tz —

Définition 1.2 : (Forme canonique d’un polynome du second degré)

Soient a € R*, b € R, c € R et f € Py[R] un polynéome du second degré, défini par f(x) = az? + bz + c.

On appelle forme canonique de f 'écriture de f sous la forme :

Ve €R, f(z)=a(r—a)*+p

gec a€Ret g eR. (Ces letires se lisent « alpha » et « béta ». Voir Ualphabet grec.)

Preuve :
Soit f un polynoéme du second degré, défini par sa forme dévloppée f(z) = ax? + bx + c.

On souhaite montrer qu’il existe trois réels «, g et a tels que :
flx)=a(z—a)*+p
Développons le membre de droite :

a(r —a)? + B = a(x® — 20z + o?) + B = az® — 2aax + aa® + B




En identifiant les coefficients des mondémes avec ceux de la forme dévloppée de f(z), on obtient le systéme suivant :

—2aa =10
ac’? + B =c
De la premiere équation, on tire que o = —%. En substituant cette valeur dans la deuxiéme équation, on obtient :
5=c—aa2:c—a<_b)2:c_ab2:4“_’)2:4@0—?)2
2a 402  4a  4a 4a

Ainsi, on a trouvé les valeurs de « et 8 en fonction de a, b et c.
Conclusion :

Tout polynéme du second degré f(z) = axz? + bx + ¢ peut s’écrire sous la forme canonique :

b\? dac—b?
f(x)—a<x+2a> +T

Ce qui acheve la démonstration.
Exemple :
@ Soit f(z) = 32% — 6z + 5.

Pour mettre f sous forme canonique, on compléte le début de I'identité remarquable a? — 2ab + b%. Cette

technique de calcul s’appelle la méthode de complétion du carré :

3 (22 —Zx)

(
3(x2—2$+())+5

3(m2—2x+ 12 - )+5
—_—
a2—2ab+b2

3((z—1)%-1)+5

3(x—1)°-3+5

3(z—1)"+2

Donc, la forme canonique de f est f(z) = 3(z —1)? + 2.
@ Soit g(z) = —222% + 8x — 3.

Pour mettre g sous forme canonique, on utilise la méthode de complétion du carré avec I'identité remarquable

a? — 2ab+ b2 :

Donc, la forme canonique de g est g(z) = —2(z — 2)? + 5.

() Soit h(x) = 522 4 10. On a automatiquement :
h(z) =5 (z — 0)* + 10

Dans ce cas, la forme canonique est identique & la forme développée : h(z) = 522 + 10.



Proposition 1.3 : (Eztremum, Variation d’un polynéme du second degré)

Soient a € R*, b € R, c € R et f € P2[R] une fonction polynéme du second degré définie par f(z) = az? + bz + c.

Sia>0:

b
La fonction f admet un minimum en x = 5
a

b b
Elle est strictement décroissante sur } —00; —2} et strictement croissante sur {—2; 400 [
a a

Sia<0:
b

La fonction f admet un mazimum en x = ~%g"
a
b
} et strictement décroissante sur {2; 400 {
a

Elle est strictement croissante sur ] —00; 5~
a

Preuve :
Iﬁlfaire quand j’aurai pas la flemme.

Exemple :

Casa>0:
Yy Soit f(x) = 22 — 2z — 2.
4+ Cr
On remarque que a = 1 > 0.
5 La courbe représentative de f ci-contre montre bien une courbe stric-
. tement décroissante jusqu'a r = —% = —% =1 et qu’ensuite elle
} Z } %, est strictement croissante.
_ |
2 1 2 4 Donc elle admet bien un minimum en x = 1.
N
minimum -
41
Casa<0:
: .2 27
Soit g(v) = —2* — 2z + £5.
maximum  On remarque que a = —1 < 0.
La courbe représentative de g ci-contre montre bien une courbe stricte-
ment croissante jusqu’'a T = —% =— 2X—(31) = —1 et qu’ensuite elle
} X, est strictement décroissante.
-4 2 Donc elle admet bien un maximum en x = —1.
_9
¢
41

Définition 1.4 : (Sommet d’un polynome du second degré)

On appelle sommet d’un polynéme du second degré le point de la parabole représentant ce polynéme qui

correspond & son extremum (maximum ou minimum).



Exemple :

Le sommet des polyndmes du second degrés f et g suivants sont représentés par le point S sur leur courbe

représentative :
Y
4 A4
y
2 A4
-2 4 —4 2
_9 _9
\F
—4 —4 !

Proposition 1.5 : (Coordonnées du sommet d’un polynéome du second degré)

Soient a e R*, beR, ce R, a €R, f € R et f € Py[R] un polyndéme du second degré dont :
@ la forme dévloppée est : f(z) = ax?® + br + ¢

@ la forme canonique est : f(z) = a(z — a)? + 8

Soit S le sommet de 6 de coordonnées (xg;ys). On a la propriété suivante :

@ si f est sous forme dévloppée :

T = b
s = 73

ys = f(zs)=f(—-2%)

@ si f est sous forme canonique :

Dans tous les cas, on a :

S(xs;ys) =S (a;8) =S (2baj <2b0>)

L

Preuve :
Iﬁlfaire quand j’aurai pas la flemme.

Exemple :

Soit P(x) = 22 — 42 + 7 un polynome du second degré.
1. Calculer avec la forme dévloppée de P les coordonnées du sommet S.
2. Mettre la fonction P sous la forme canonique.
3. En déduire les coordonnées du sommet S de P.
4. Que remarque-t-on ?

1. D’apres la propriété [I.5] on peut calculer les coordonnées de S de la fagon suivante :

s :_%:_2;41 =2
ys =Plws)=P(-%)=P(-55) =P@) =2 -4x2+7=3



2. On commence par identifier avec quelle identité remarquable on pourra potentiellement "forcer son passage".

Rapel : cette méthode s’appelle la méthode de complétion du carré.

La partie —4z nous indique clairement que ’identité remarquable a? — 2ab + b? est un bon candidat car elle

ressemble fortement a —2ab.
De plus 2 ressemble fortement & a? de ’identité remarquable.

En modifiant un peu I’écriture de P, on peut commencer a faire apparaitre a et b dans P :

Plx)=a2® -4z +7

=22 —2x2xx+47

Ainsi il est claire que pour l'identité remarquable a? — 2ab + b? on identifie facilement a et b :

11 ne reste plus qu’a faire apparitre b dans P pour "forcer le passage' de I'identité remarquable :

Plx)=a2>-2x2xx+7

22 —2x2xx+04+7

2 —2x2xx+22 —2% 47
a?—2ab+b2

(x—2)2—2247

=(x—2)%—4+7
=(z—-2)?+3
3. Ainsi a(z —a)? + 3 = (x —2)?2 + 3 donc a = 2 et f = 3 donc d’apres la proposition les coordonnées du
sommet S de P sont (a;5) = (2;3).
4. On remarque que les coordonnées calculées dans [1.|sont les mémes que ceux dans Ce qui est cohérent car

I’on détermine les coordonnées du méme point S de deux manieres différentes.

Proposition 1.6 : (Aze de symétrie de la courbe représentative d’un polynome du second degré)

Soient f € Po[R] et S (zg;ys) € € le sommet de €.

¢y admet toujours un axe de symétrie d’équation v = wg.

Preuve :

Iéfaire quand j’aurai toujours pas la flemme.

Exemple :

En reprenant I'exemple précédent avec P(x) = x? — 4x + 7, on a déja déterminé
%P  les coordonnées du sommet S de €p qui sont (zs;ys) = (2;3).

On en déduit immédiatement d’apres la propriété que ’équation x = 2 est

I’équation de 'axe de symétrie de P représenté en rouge.

xrs x




Proposition 1.7 : (Tableau de variation d’un polynéme du second degré)

L

Preuve :

dans le casou a > 0 :

dans le casou a < 0 :

Soient f € P2[R], a € R* le coefficient dominant de f et S (xg;ys) € €5 le sommet de E.

Le tableau de wvariation de f est :

x —00 s —+00
—00 +00
f \ Us /
x —00 xs —+00
Ys
—00 —+00

A faire quand j’aurai toujours et encore toujours pas la flemme.

Exemple :

7] @
2 41
‘ o
-2 4
1Ys
‘ x
—4 2
92|
41 6Q

Soit P(x) = a? — 22 — 2 avec €p représentée ci-contre, on peut par exemple
directement calculer les coordonnées du sommet S de €p avec la forme dévloppée

de P qui sont :

Ys :P(ms):P(2):22—4x2+7:3

Comme le coefficient dominant de P qui est a > 0, on en déduit immédiatement

d’aprés la propriété que le tableau de variation de P est :

x —00 1 “+00

f _00\3/+OO

Soit Q(x) = —a? — 22 + % avec 6 représentée ci-contre, on peut aussi par
exemple d’abord déterminer la forme canonique de Q en utilisant la méthode de
complétion du carré pour ensuite directement avoir les coordonnées du sommet
S de €q. Ainsi :

Qz) = —2* — 22 + X

10
27
=—(2® 4+ 20 +0)+ =

10
27
= (2 +2x+1%2 - 1%+ =

- 10
=—((z+1)*-1) ;10
:—(x+1)2+;r10
=—(x—|—1)2+ﬁ



On a donc directement grace a la propriété les coordonées du sommet S :

S(zsiys) = S(a; 8) = S (_1; :15;>

Comme le coefficient dominant de @ qui est a < 0 , on en déduit immédiatement d’apres la propriété que le

tableau de variation de Q) est :

T —00 -1 +oo
37
10

—00 —+00

Définition 1.8 : (Equation du second degré)
Soit f € Py[R].

On appelle équation du second degré toute équation qui peut s’écrire sous la forme :

flz) =0

Exemple :

@ 22 — 52 + 6 = 0 est une équation du second degré. On a bien le membre de gauche qui est un polynéme du

second degré et le membre de droite qui est 0.
@ 41% —1224+6 = —3 est aussi une équation du second degré car elle est équivalente & I’équation 42> —12x+9 = 0.

@ 3x — 5 =7 n’est pas une équation du second degré car le monéme en 2 est nul.

1

5,z ’est pas un monome.

@ ﬁ + 6x — 57 = 0 n’est pas une équation du second degré car le terme

Définition 1.9 : (Discriminant)

Soient a € R*, b€ R, c € Ret f € Py[R], tels que f(x) = azx? + bz +c.

On appelle discriminant de f la valeur b* — 4ac. Cette valeur est généralement noté A (se lit « Delta » c’est la

lettre majuscule de § qui se lit « delta ». Voir alphabet grec). On a donc :

A =% — 4dac

L

Exemple :
@ Pour f(z) =2*+2z+5,0ona:

Ap=(22-4x1x5=4-20=-16
@ Pour g(z) = 42? — 122+ 9, on a :

Ay= (=12 —4x4x9=144 - 144 =0
@ Pour h(z) = 2% — 52 +6,0on a :

Ap=(-5)2-4x1x6=25-24=1



Proposition 1.10 : (Solutions d’une équation du second degré)

Soient a € R*, b € R, c € R, f € Po[R], tels que f(z) = ax® + bx + c et A € R le discriminant de f.

Les solutions de f(z) = 0 sont déterminées par 3 cas possibles :
@ Si A <0 alors f(z) =0 n’a pas de solution réelle.

@ Si A =0 alors f(x) =0 a une seule et unique solution qui est :

—b

.’130:%.

@ Si A > 0 alors f(x) =0 a deuz solutions distinctes qui sont :

—b-VA bt VA

I = i)
2a 2a

(-

Preuve :

A faire en prio! Elle est au programme. Mais pour I'instant flemme.

Exemple :

En reprenant ’exemple précédent :

¥ Pour f(z) =2?+2z+5,ona Ay =—16 < 0.
f
Donc d’apres léquation 22 + 22 +5 = 0 n’a pas de solution réelle.
2 4
‘ T
—4

Pour g(z) = 42? — 12z +9,ona A, =0
Donc d’apres I’équation 42?2 — 122 + 9 = 0 a une seul solution qui est :
b —(-12) 3

=59, 7 Taxa 2

On peut vérifier si on n’a pas fait d’erreur. En remplagant x par zo dans g(z)

on devrait obtenir un résultat qui vaut 0 :

‘ ‘ ‘ ‘ wo)=g(2)=a(3 2f12 3)Yi9—9_1819=0
~1 1 %o 2 3 =9 3 ) =2 2 B B

y Pour h(z) =2? -5z +6,ona A, =1>0
5 G Donc d’apres léquation 22 — 5z 4+ 6 = 0 a deux solutions distinctes qui
sont :

. —b—A, —(-5)—-v1 5-1 .y

1 T2 T 2 2
~b+vVA, —(-5)+v1I 5+1
_7;‘2 = = = = 5
2a 2x1 2

1 MT/? 4 On peut vérifier si on n’a pas fait d’erreur. En remplacant = par z; puis par x»

dans h(z) on devrait obtenir un résultat qui vaut 0 :

hz))=g(2) =22 -5x24+6=4—-10+6=0

h(r))=g(3)=3"—-5x34+6=9-154+6=0



Définition 1.11 : (Racine d’un polynome du second degré)
Soient f € P3[R] et A € R le discriminant de f.

On appelle racine de f une solution de f(z) = 0.
@ Si A < 0 alors f n’a pas de racine.

@ Si A =0 alors la seul solution de f(x) = 0 est appelée racine double de f.

®
[
Exemple :

En reprenant ’exemple précédent et d’apres :

Si A > 0 alors f admet deux racines distinctes.

@ f m’a pas de racine.
@ x est solution de g(x) = 0. Donc z( est une racine double de g.
@ 21 et xo sont solutions de h(x) = 0. Donc x; et xo sont des racines distinctes de h.

Proposition 1.12 : (Somme et produit des racines d’un polynome du second degré)

Soient a € R*, b € R, c € Ret f € Py[R], tels que f(x) = az? + bz +c.

La somme des racines de f est notée X (se lit « Sigma », c’est la lettre majuscule de o qui se lit « sigma », voir

alphabet grec) et a pour valeur %b Autrement dit :

D
a

La produit des racines de f est notée Il (se lit « Pi », ¢’est la lettre majuscule de w qui se lit « pi », voir alphabet

grec) et a pour valeur ¢. Autrement dit :

==
a

L

Preuve :
I_&Ifaire. Quoi ? La flemme ? Bah je crois qu’elle est toujours présente.

Exemple :
En reprenant ’exemple précédent et d’apres :

@ Pour la fonction f, ¥, et Iy existe bien malgré qu’elle n’a pas de racine réelle :

=
<
Il
I
Il
|
Il
Ut

Cela s’explique avec I’ensemble nombres complexe C. Les racines de f sont dans C et leur somme donne bien
—2 et leur produit donne bien 5 (voir chapitre sur C en T'%).
@ Pour la fonction g, ¥, et 11, existe bien malgré qu’elle a qu'une seul racine. En effet c’est une racine double

donc : )
_ —(—12 3
Zg:—:%:i%:moero Rappel:xo:§

II, =

g =g X X9

Y = = =5=x1+ 2o Rappel : x1 =2 et 29 =3

1
Hh,: =6=x1 X T2

10



Proposition 1.13 : (Factorisation d’un polynéme du second degré)

Soient a € R*, b € R, c € R, f € Po[R], tels que f(z) = ax® + bx + c et A € R le discriminant de f.

Pour la forme factorisée de f,il y a 3 cas :
@ Si A < 0 alors f n’a pas de forme factorisée dans R (elle eziste dans C, voir en T%).

@ Si A = 0 alors soit zg € R la racine double de f, la forme factorisée de f est :
f(2) = a @ —a0) (& — w0) = a (& — a0)’
@ Si A > 0 alors soient x1 € R et x5 € R les racines de f, la forme factorisée de f est :

f@) =a(e—m) (0= 2)

L

Preuve :

Soient f € P3[R}, I € P2[R], e € Po[R], m € P2[R] et f € P3[R]. On a :

fxlIxexmxmxe= flemme A faire plus tard.

L

Exemple :

En reprenant ’exemple précédent et d’apres :
@ Pour la fonction f, on a Ay < 0 donc f n’a pas de forme factorisée.

@ Pour la fonction g, on a A; =0 et zg = % Donc la forme factorisée de f est :

3\ 2
g(z) =a(z—x)* =4 <1 — 2)
(*) Pour la fonction h, on a Ay >0, 1 = 2 et x5 = 3. Donc la forme factorisée de f est :

Proposition 1.14 : (Signe d’un polynome du segond degré)
Soient a € R*, b € R, c € R, f € Po[R], tels que f(z) = ax® + bx + c et A € R le discriminant de f.

Le tableau de signes de f est donné par 'un des 3 x 2 cas possibles suivants :

@ Si A < 0 alors f n’a pas de racine, on a donc le tableau de signes de f qui est :

x —00 —+00

flx) signe de a

@ Si A = 0 alors soit zp € R la racine double de f, on a donc le tableau de signes de f qui est :

x —00 Zo —+00

f(z) signedea 0  signedea

@ Si A > 0 alors soient x1 € R et 25 € R les racines distinctes de f, on a donc le tableau de signes de f :

x —00 X1 X2 +00o

signe
f(x) signe de a 0 opposgé de a 0 signe de a

L

11



Preuve :
Toujours la flemme, a faire plus tard.

Exemple :
(*) Soit f(z) =22 +2z+5. Ona:
Ap=2—4x1x5=4-20=-16<0

Donc d’apres la propriété f n’a pas de racine.
Comme a =1 > 0, on a d’aprés la propriété le

tableau de signes suivant :

x —00 “+00

f(z) +

On peut vérifier en tragant ¢y sur un graphique.

Elle se trouve bien au dessus de 'axe des abscisses :

O,

Soit g(z) = —2? — 22z — 3. On a :
Ay= (-2 -4x(-1)x(-3)=4-12=-8<0

Donc d’apres la propriété [1.10] g n’a pas de racine.
Comme a = —1 < 0, on a d’aprées la propriété

le tableau de signes suivant :

x —00 “+00

9() -

On peut vérifier en tragant %, sur un graphique.

Elle se trouve bien en dessous de I'axe des abscisses :

-3 -2 _1—1 1

@ Soit h(z) =22 —4r+4. On a :
Ap=(-4)?-4x1x4=16-16=0

Donc d’apres la propriété h a une racine double

qui est :

Comme a =1 > 0, on a d’aprés la propriété [[.14] le

tableau de signes suivant :

T —00 2 +00

h(x) + 0 +

On peut vérifier en tracant %} sur un graphique.

Elle se trouve bien au dessus de 'axe des abscisses :

Yy
41

12

Soit k(z) = —22%2 + 4z — 2. On a :
Ap=(4)?-4x(-2)x(-2)=16—-16=0

Donc d’apres la propriété k a une racine double

qui est :
—4

ok

Zo

Comme a = —2 < 0, on a d’apreés la propriété [1.14]

le tableau de signes suivant :

x —00 1 +oo

k(z) — 0 —

On peut vérifier en tracant %} sur un graphique.

Elle se trouve bien en dessous de I'axe des abscisses :




@ Soit I(z) = 22 — 5x +6. On a :

A= (-5?-4x1x6=25—-24=1

Donc d’apres la propriété [ a deux racines

distinctes qui sont :

~(=5) = VI

r=——=2
2x1
—(=5 1
1‘227( )+f=3
2x1

Comme a =1 > 0, on a d’aprés la propriété le

tableau de signes suivant :

I(x) + 0 - 0 +

On peut vérifier en tragant €; sur un graphique.

Elle se trouve bien au dessus de ’axe des abscisses :

Y
41

T

X

] Tio—3%2 4

:*) Soit m(x) = —2? + 3z +4. On a :

Ap=3>—4x(-1)x4=9+16=25

Donc d’apres la propriété [1.10] m a deux racines

distinctes qui sont :

-3 -v25

“E ey 4
—3+4/25

gg = — Y20
2x (-1)

Comme a =1 > 0, on a d’apres la propriété [[.14] le

tableau de signes suivant :

m(z) +

On peut vérifier en tracant %; sur un graphique.

Elle se trouve bien au dessus de ’axe des abscisses :

Y

6,,

4,,

2,,
‘11?2‘ ‘ ‘ ‘ ‘IIT’E
-2 +1 1 2 3 4 5

—2 4

-4t

Soit I'inéquation x? + 3z — 5 < —z + 2. Résoudre l'inéquation c’est trouver les solutions de cette inéquation. On

peut d’abord modifier le probleme avec des inéquations équivalentes :

22 4+3c-5<—xz+2

=3 2243 —-54+2x—-2<-a+2+4z2—2

o= 2244 —-7<0

Ainsi, le probléme devient « trouver les valeurs de x tel que 22 4+ 4x — 7 est négatif ». On peut déterminer les

solutions avec le tableau de signes de % + 4 — 7 car ce tableau donnera en particulier les valeurs de z tel que

le trindme soit négatif.

Il faut donc d’abord calculer le discriminant pour savoir combien il y a de racine :

A=4>—4x1x(=7)=44>0

Donc il y a deux racines distinctes :

—4—A 4 JEIXTIT
- ’ -

4 VEAxVIT  —4—2y10
VAXVIL =2 VT

=T 2
—4 4+ /44
“:%:‘“V”

On remarque que —v/11 < 4/11 donc en ajoutant —2 & chaque membre on a —2 — /11 < —2 4+ /11 et donc que



x1 < 2. On peut donc les placer correctement dans l’ordre dans le tableau de signes de x? + 4x — 7 dont le

coefficient dominant est a = 1 > 0. Ainsi d’aprés la propriété ona:

x —00 —2 V11 —2+V11 +00

2+ 4 —7 + 0 — 0 +

Le tableau de signes de 2% + 4z — 7 nous montre clairement que 1’ensemble des solutions de x? + 4z — 7 < 0
est S = ]-2—V11; -2+ V11[.

Mais comme P'inéquation x2 + 42 — 7 < 0 est équivalente & 2% + 3z — 5 < —x + 2 (voir début de I’exemple) donc

Pensemble des solutions de 22 4+ 3z — 5 < —x + 2 est aussi .7.

Dans cet exemple, une grande partie des calculs sera laissé au lecteur qui doit vérifier les résultats.
Soient f(z) = —x? 4+ 8z — 11 et g(x) =  — 1. On cherche & déterminer la position de 6 par rapport & €.

Par définition de la soustraction, le calcul f(z) — g(x) nous dira quelle fonction est plus grand que l'autre :

Si f(x) — g(x) > 0 alors f(z) > g(z)
Si f(z) — g(z) = 0 alors f(z) = g(x)
Si f(x) —g(z) <0 alors f(z) < g(z)

On commence donc par déterminer la différence :
f(x) —g(x) = —2® + 72 — 10
On remarque que f(x) — g(z) est un trinéme donc pour avoir son signe on détermine d’abord son discriminant :
Af@)-gx) =9>0

Donc f(z) — g(x) a deux racines distinctes :

xr1 = 5
ro = 2
On remarque que 2 < 5 donc zo < x1. De plus le coefficient dominant de f(x) — g(z) est a = —1 < 0 donc le
tableau de signes est :
T —00 2 5 +00
f(@) = g(x) -0+ 0 -

On en conclue donc que

Va € ]—00;2[U]5; +ool,  f(x) < g(x)
Vo € |—o0; 2], f(x) > g(x)

Va € {2;5}, f(x) =g(z)
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