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Chapitre 1

Ensembles de nombres
Définition 1.1 : (Ensemble)

On appelle ensemble un rassemblement d’objets distincts. Il est généralement noté par une lettre majuscule. Si

deux ensembles distincts possèdent la même lettre, on les distinguer avec des indices.

Exemple :

∗ La classe de Seconde 6 forme un ensemble. On peut noter cette ensemble avec une lettre majuscule et un nombre

en indice : S6. On peut expliciter les objets de cette ensemble :

S6 = {Şeyma; Déborah; Elodie; Maïssame; Sarah; Fanny; Julianne; Jade; . . .}

Cette façon de définir S6 en listant les objets entre accolade séparés par des points-virgules s’appelle la

notation en extension.

∗ On peut aussi définir un ensemble en donnant ses propriétés caractéristiques. Si on définit Pr l’ensemble des

pommes rouges qui existent on notera :

Pr = {pomme | pomme est rouge}

Cette façon de définir Pr s’appelle la notation en compréhension. La barre verticale peut se lire « tel que »,

« pomme » représente un élément générique de l’ensemble Pr et « pomme est rouge » est une propriété que doit

vérifier l’objet « pomme » pour appartenir à l’ensemble Pr. Ainsi, tous les objets qui sont des « pommes » et

qui vérifient la propriété « pomme est rouge » appartiennent à l’ensemble Pr.

Définition 1.2 : (Elément)
Soit E un ensemble.

On appelle élément de E tout objet appartenant à E.

Si x est un objet de E, on dira que x appartient à E et on notera x ∈ E.

Si x n’est pas un objet de E, on dira que x n’appartient pas à E et on notera x /∈ E.

Exemple :

Elodie est un élément de S6 donc Elodie ∈ S6.

Définition 1.3 : (Ensemble des entiers naturels)
On appelle ensemble des entiers naturels l’ensemble des nombres entiers qui sont positifs.

On note N cet ensemble. On a donc :

N = {n | n est un nombre entier positif} = {0; 1; 2; 3; 4; 5; 6; 7; ...}

Exemple :

4 ∈ N 214 641 264 125 623 ∈N −51 312 /∈N 0, 2 /∈ N −4, 5 /∈ N 4
2 ∈ N −7 + 10 ∈ N 80 − 53 ∈ N
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Définition 1.4 : (Ensemble des entiers relatifs)
On appelle ensemble des entiers relatifs l’ensemble des nombres entiers qui sont positifs ou négatifs.

On note cet ensemble Z et on a :

Z = {n | n est un nombre entier positif ou négatif} = {...; −3; −2; −1; 0; 1; 2; 3; ...}

Exemple :

4 ∈ Z 214 641 264 125 623 ∈Z −51 312 ∈Z 0, 2 /∈ Z −4, 5 /∈ Z 4
2 ∈ Z −7 + 10 ∈ Z 80 − 53 ∈ Z

Définition 1.5 : (Ensemble des décimaux)
On appelle ensemble des nombres décimaux l’ensemble des nombres qui peuvent s’écrire avec un nombre de

chiffres fini après la virgule. Donc il peuvent s’écrire sous la forme a
10n avec a ∈ Z et n ∈ Z.

On note cet ensemble D et on a :

D =
{ a

10n

∣∣∣ a ∈ Z, n ∈ N
}

Exemple :

4 = 4
1 = 4

100 ∈ D 214 641 264 125 623 = 214 641 264 125 623
100 ∈ D −51 312 = −51 312

100 ∈ D 0, 2 = 2
101 ∈ D

−4, 5 = −45
101 ∈ D 4

2 = 4×5
2×5 = 20

101 ∈ D −7 + 10 = 3
100 ∈ D 80 − 53 = 27

100 ∈ D

0, 333... = 1
3 /∈ D (voir preuve à la fin du chapitre) π /∈ D

√
2 /∈ D −0,000 24 = −24

105 ∈ D

Définition 1.6 : (Exclusion du nombre 0 )
En cas de besoin, il est possible d’exclure le nombre 0 d’un ensemble à l’aide du symbole *. Ainsi :

N∗ = {1; 2; 3; 4; 5; 6; 7; ...}

Z∗ = {...; −3; −2; −1; 1; 2; 3; ...}

etc.

Définition 1.7 : (Fraction)
On appelle fraction l’écriture d’un quotien avec un numérature entier et un dénominateur non nul entier.

Si l’écriture a
b est une fraction, alors a ∈ Z et b ∈ Z∗.

Exemple :

Malgré le fait que 0,5
1,5 = 5

15 , l’écriture 0,5
1,5 n’est pas une fraction car 0, 5 /∈ Z et 1, 5 /∈ Z∗ alors que l’écriture 5

15 est une

fraction car 5 ∈ Z et 15 ∈ Z∗.

Définition 1.8 : (Ensemble des nombres rationnels)
On appelle ensemble des nombres rationnels l’ensemble des nombres qui peuvent s’écrire sous la forme d’une

fraction. On note cet ensemble Q et on a :

Q =
{a

b

∣∣∣ a ∈ Z, b ∈ N∗
}

Exemple :

25 = 25
1 ∈ Q −7 = −7

1 ∈ Q 3, 725 = 3 725
1 000 ∈ Q −0,000 125 = −125

106 ∈ Q 0, 2 = 1
5 ∈ Q 1

3 ∈ Q π /∈ Q
√

2 /∈ Q (voir la preuve du chapitre n° ? ? ?)
√

16 = 4
1 ∈ Q
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Définition 1.9 : (Infini)
On appelle infini une limite que les nombres ne pourront jamais atteindre.

On note +∞ la limite dont tous les nombres sont plus petits.

On note −∞ la limite dont tous les nombres sont plus grands.

Exemple :

∗ −4 est plus petit que +∞ et il est plus grand que −∞

∗ 63 495 141 541 935 246 125 699 742 214 762 593 675 257 396 est plus petit que +∞ et il est plus grand que −∞

∗ π est plus petit que +∞ et il est plus grand que −∞

∗
√

2 est plus petit que +∞ et il est plus grand que −∞

Définition 1.10 : (Ensemble des nombres réels)
On appelle ensemble des nombres réels l’ensemble des nombres qui sont plus petit que +∞ et qui sont plus

grand que −∞.

On note cet ensemble R.

Exemple :

25 ∈ R −7 ∈ R 3, 725 ∈ R −0,000 125 ∈ R 0, 2 = 1
5 ∈ R 1

3 ∈ R π ∈ R
√

2 ∈ R
√

16 ∈ R

Définition 1.11 : (Ensemble des nombres irrationnels)
On appelles ensemble des nombres irrationnels l’ensemble des nombres qui sont réels et qui ne sont pas

rationnels. On le note Q′ ou encore R \ Q. On a donc :

Q′ = R \ Q = {x | x ∈ R, x /∈ Q}

Exemple :

25 /∈ R \ Q −7 /∈ R \ Q 3, 725 /∈ R \ Q −0,000 125 /∈ R \ Q 0, 2 = 1
5 /∈ R \ Q 1

3 /∈ R \ Q π ∈ R \ Q
√

2 ∈ R \ Q
√

16 /∈ R \ Q

Définition 1.12 : (Diagramme d’Euler)
On appelle diagramme d’Euler une représentation graphique utilisée pour illustrer les relations entre différents

ensembles.

Exemple :

NZDQR 0 5
20

150−7

−57
0, 125

2
5

−31
1025

−25, 63

1
3

−2
3

2
7

−5
12π

√
2

−
√

7

La zone hachuré représente R \ Q
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Définition 1.13 : (Quantificateur universel)
On appelle quantificateur universel un opérateur logique, noté ∀, utilisé pour exprimer l’idée que tous les éléments

d’un ensemble donné possèdent une certaine propriété.

Le symbole ∀ se lit « pour tout » ou « quel que soit ».

Exemple :

∗ Soit O l’ensemble des oiseaux. On peut écrire la propriété suivante :

∀o ∈ O, o vole.

On peut lire la propriété de la façon suivante : Pour tout élément o dans l’ensemble des oiseaux, on a o qui vole.

∗ La notation formelle de la phrase « pour tout réel, son carré est positif » est :

∀x ∈ R, x2 ⩾ 0

∗ « La somme d’un nombre réel avec son opposé est toujours nul » peut être traduit formellement :

∀x ∈ R, x + (−x) = 0

Définition 1.14 : (Quantificateur existenciel)
On appelle quantificateur existentiel un opérateur logique, noté ∃ , utilisé pour exprimer l’idée qu’il existe au

moins un élément dans un ensemble donné qui possède une certaine propriété.

Le symbole ∃ se lit « il existe ».

Exemple :

∗ Soit A l’ensemble des animaux. La phrase « Il y a au moins un animal qui peut voler » peut se traduit formelment

par :

∃a ∈ A, a vole.

∗ « Il existe un nombre entier qui est supérieur à 10 » se traduit formellement par :

∃n ∈ N, n ⩾ 10

∗ « On peut trouver un nombre qui, multiplié par lui-même, donne 25 » se traduit formellement par :

∃x ∈ R, x × x = 25

Définition 1.15 : (Inclusion, sous-ensemble, sur-ensemble)
Soient A et B deux ensembles.

On dit que A est inclus dans B, et on note A⊂B, si tous les éléments de A sont aussi des éléments de B.

Dans ce cas, on dit aussi que A est un sous-ensemble de B, ou encore que B est un sur-ensemble de A.

Autrement dit :

A⊂B ⇔ ∀a ∈ A, a ∈ B

Si A n’est pas inclus dans B on notera A̸⊂B.

BA
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Propriété 1.16 : (Inclusion des ensembles usuels)
On a les inclusions suivantes :

∗ N est inclus dans Z : N ⊂ Z

∗ Z est un sous-ensemble de D : Z ⊂ D

∗ Q est un sur-ensemble de D : D ⊂ Q

∗ Q est inclus dans R : Q ⊂ R

Autrement dit :

N ⊂ Z ⊂ D ⊂ Q ⊂ R

Preuve :
∗ Soit n ∈ N.

Donc n est un entié positif. Mais d’après la définition 1.4, tout entier positif ou négatif appartient à Z donc

n ∈ Z. On en conclue que N ⊂ Z.

∗ Soit n ∈ Z.

n = n

1 = n

100

Donc d’après la définition 1.5, n ∈ D. On en conclue que N ⊂ D.

∗ Soit d ∈ D. Donc d’après la définition 1.5 :

∃a ∈ Z, ∃n ∈ N, d = a

10n

D’après la définition 1.8, il faut montrer que d peut s’écrire sous la forme d’une fraction.

Si n ⩾ 0, il est claire que l’écriture a
10n est une fraction. En effet on aura a ∈ Z et 10n ∈ N∗

On vient de montrer que, dans tous les cas, d peut s’écrire sous la forme d’une fraction. Donc d ∈ Q. On en

conclue alors que D ⊂ Q.

∗ Soit q ∈ Q. D’après la définition 1.8 on a :

∃a ∈ Z, ∃b ∈ N∗, q = a

b

D’après la définiton 1.9, le résultat d’une telle division a
b est forcement plus grand que −∞ et est forcement

plus petit que +∞.

Donc d’après la définition 1.10, q = a
b ∈ R.

On vient donc de montrer que Q ⊂ R.

On conclue alors la preuve par la synthèse suivante :

N ⊂ Z ⊂ D ⊂ Q ⊂ R
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Définition 1.17 : (Intersection)
Soient A et B deux ensembles.

On appelle intersection de A et de B, et on note A∩B, l’ensemble des éléments qui sont dans A et dans B.

Si un élément x est dans A et dans B alors on notera : x ∈ A ∧ x ∈ B.

Autrement dit :

A ∩ B = {x | x ∈ A ∧ x ∈ B}
A B

A ∩ B

Définition 1.18 : (Union)
Soient A et B deux ensembles.

On appelle union ou bien réunion de A et de B, et on note A∪B, l’ensemble des éléments qui sont dans A ou

dans B.

Si un élément x est dans A ou dans B alors on notera : x ∈ A ∨ x ∈ B.

Autrement dit :

A ∪ B = {x | x ∈ A ∨ x ∈ B}
A B

A ∪ B

Exemple :

∗ Soient A = {pommes; poires; bananes} et B = {poires; bananes; oranges}.

On a donc :

A ∩ B = {poires; bananes}

A ∪ B = {pommes; poires; bananes; oranges}

∗ Soient M = {élèves | élèves est du club de mathématiques} et F = {élèves | élèves est du club de français}

On a donc :

M ∩ F = {élèves | élèves font partie du club de mathématiques et du club de français}

M ∪ F = {élèves | élèves font partie du club de mathématiques ou du club de français}

∗ Soient A l’ensemble des entiers pairs et B l’ensemble des entiers multiples de 3.

On a donc :

A ∩ B = {n ∈ Z | ∃k ∈ Z, n = 2k ∧ ∃k′ ∈ Z, n = 3k′}

= {n ∈ Z | ∃k ∈ Z, ∃k′ ∈ Z, n = 2k × 3k′}

= {n ∈ Z | ∃k′′ ∈ Z, n = 6k′′}

= {n ∈ Z | n est un multiple de 6}
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A ∪ B = {n ∈ Z | ∃k ∈ Z, n = 2k ∨ ∃k′ ∈ Z, n = 3k′}

= {n ∈ Z | n est un multiple de 2 ou un multiple de 3}

∗ Soient A = {2; 4; 6; 7; 8; 10} et B = {3; 4; 8; 12}.

On a donc :

A ∩ B = {2; 4; 6; 7; 8; 10} ∩ {3; 4; 8; 12}

= {4; 8}

A ∪ B = {2; 4; 6; 7; 8; 10} ∪ {3; 4; 8; 12}

= {2; 3; 4; 6; 7; 8; 10; 12}

∗ Soient A = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} et B = {2; 5; 7}.

On remarque que B ⊂ A donc :

A ∩ B = B

A ∪ B = A

Définition 1.19 : (Ensemble vide)
On appelle ensemble vide l’ensemble qui ne contient aucun élément. On le note ∅. Il peut être défini par :

∅ = {}

Exemple :

Soit A = {0; 2; 4; 6} et B = {1; 3; 5; 7; 9}. On a :

A ∩ B = {0; 2; 4; 6} ∩ {1; 3; 5; 7; 9}

= {}

= ∅

Définition 1.20 : (Intervalle réel)
On appelle intervalle réel un ensemble de nombres délimité par deux nombres réels a et b constituant une borne

inférieure et une borne supérieure. Un intervalle contient tous les nombres réels compris entre ces deux bornes.

En fonction de si les bornes sont incluses ou non dans l’intervalle, on distingue les intervalles :

Intervalle ouvert : ]a; b[ = {x ∈ R | a < x < b}

Intervalle fermé : [a; b] = {x ∈ R | a ⩽ x ⩽ b}

Intervalle semi-ouvert à gauche : ]a; b] = {x ∈ R | a < x ⩽ b}

Intervalle semi-ouvert à droite : [a; b[ = {x ∈ R | a ⩽ x < b}
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Exemple :

Inégalité Intervalle Représentation

2 ⩽ x ⩽ 4 x ∈ [2; 4] 0 1 2 3 4
[ ]

−1 < x ⩽ 3 x ∈] − 1; 3] −1 0 1 2 3
] ]

0 ⩽ x < 2 x ∈ [0; 2[ 0 1 2
[ [

2 < x < 4 x ∈]2; 4[ 2 3 4
] [

x ⩾ 2 x ∈ [2; +∞[ 2 3 4
[

x > −1 x ∈] − 1; +∞[ −1 0 1 2 3 4
]

x ⩽ 3 x ∈] − ∞; 3] −2 −1 0 1 2 3
]

x < 2 x ∈] − ∞; 2[ −2 −1 0 1 2
[

∗ Soient les intervalles A =]1; 5[ et B =]3; 7[.

L’intersection de A et B est :

A ∩ B =]1; 5[∩]3; 7[=]3; 5[

La réunion de A et B est :

A ∪ B =]1; 5[∪]3; 7[=]1; 7[

La représentation sur une droite graduée des ensembles A, B, A ∩ B et A ∪ B est :

x

1 2 3 4 5 6 7

A] [ B] [
A ∩ B

] [
A ∪ B

] [

∗ Soient les intervalles A = [2; 5] et B = [3; 6[.

L’intersection de A et B est :

A ∩ B = [2; 5] ∩ [3; 6[= [3; 5]

La réunion de A et B est :

A ∪ B = [2; 5] ∪ [3; 6[= [2; 6[

x

2 3 4 5 6A
[ ] B

[ [
A ∩ B

[ ]
A ∪ B[ [
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Définition 1.21 : (Négation)
Soit P une proposition.

On appelle négation de P la proposition qui est vraie lorsque P est fausse, et qui est fausse lorsque P est vraie. On

note la négation de P par ¬P et se lit « non P ».

En d’autres termes, la négation d’une proposition affirme exactement le contraire de cette proposition.

On peut résumer la situation dans une table de vérité :

P ¬P

V F

F V

avec V l’abréviation de Vrai et F l’abréviation de Faux.

Exemple :

Soit la proposition P : « Il pleut ».

Alors sa négation est ¬P : « Il ne pleut pas ».

Si P est vraie alors ¬P est fausse. Si P est fausse alors ¬P est vraie.

Définition 1.22 : (Raisonnement par l’absurde)
On appelle raisonnement par l’absurde une méthode de démonstration qui consiste à supposer le contraire de ce

que l’on veut prouver. En développant les conséquences logiques de cette supposition, on aboutit à une contradiction,

ce qui permet de conclure que la supposition initiale était fausse et donc que la proposition que l’on voulait démontrer

est vraie.

Exemple :

Soit la proposition P : « Il n’existe pas de plus grand nombre entier. »

Pour démontrer P , on suppose la négation de P de :

¬P : « Il existe un plus grand nombre entier »

On peut donc nommer ce plus grand nombre entier :

Soit N ∈ Z le plus grand nombre entier.

Mais alors, N + 1 serait un nombre entier encore plus grand, ce qui contredit notre hypothèse initiale ¬P .

Donc, l’hypothèse ¬P est fausse, et par conséquent, P est vraie.

Autrement dit : il n’y a pas de plus grand nombre entier.

Propriété 1.23 : ( 1
3 /∈ D)

1
3 n’est pas un nombre décimal. Autrement dit :

1
3 /∈ D
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Preuve :
Soit P la proposition définie par :

P : «1
3 /∈ D»

Pour montrer la proposition P , on va utiliser le raisonnement par l’absurde. Supposons ¬P :

¬P : « 1
3 ∈ D »

Autrement dit : supposons que 1
3 soit un nombre décimal. Alors, il existe deux entiers relatifs a et n tels que :

1
3 = a

10n

En multipliant les deux membres de l’égalité par 3 × 10n, on obtient :

1
3 × 3 × 10n = a

10n
× 3 × 10n

⇔ 1 × 10n = a × 3

⇔ 10n = 3a

Cette égalité implique que 10n est un multiple de 3. Or, la somme des chiffres de 10n est toujours égale à 1 :

1 + n × 0 = 1 + 0 = 1

Un nombre est divisible par 3 si et seulement si la somme de ses chiffres est un multiple de 3.

Comme 1 n’est pas un multiple de 3, on aboutit à une contradiction.

Par conséquent, notre hypothèse ¬P de départ est fausse et donc P est vraie.

Autrement dit : 1
3 ne peut pas être un nombre décimal.
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Chapitre 2

Projeté orthogonal
Définition 2.1 : (Plan euclidien)

On appelle plan euclidien une surface plane (à l’image d’une feuille de papier) infinie, et qui s’étend indéfiniment

dans toutes les directions. Tout élément d’une telle surface qui n’a pas d’épaisseur ni de longueur (autrement dit :

qui n’a pas d’étendue) est appellé point.

Ainsi le regroupement de tous ces points forment un ensemble. Cet ensemble est noté P qui est le plan euclidien.

Exemple :

A

B

C

D

E
F

P
On peut représenter le plan euclidien P par le rectangle ci-contre.

Bien sûr, P n’est pas limité au rectangle mais il s’étant bien à l’infini

dans toutes les directions.

Ici on a représenté des éléments de P qui n’ont pas d’étendue et

sont représentés par les intersections formées par les segments des

croix. Ainsi A, B, C, D, E et F sont des éléments de P et on a donc

A ∈ P, B ∈ P, C ∈ P, D ∈ P, E ∈ P et F ∈ P.

Il en est de même pour tous les autres points existants sur ce plan.

Définition 2.2 : (Droite)
Soit P un plan euclidien.

On appelle droite de P tout ensemble formée par un alignement parfait de points dans ce plan qui s’étend à l’infini

dans les deux sens, sans élément manquant dans toute sa longueur et sans épaisseur.

De manière générale, un tel ensemble est noté D , D, D, ∆ (« Delta »), d, ou δ (« delta »). Et comme dans la

définition 1.1, sa notation peut être indexé (avoir un indice).

On peut aussi noter un tel ensemble avec les noms de deux éléments de cette droite choisie arbitrairement : si D1 est

un droite de P (autrement dit D1 ⊂ P) et si A et B sont des points de cette droite, donc des éléments de D1

(autrement dit A ∈ D1 et B ∈ D1) alors on peut noter l’ensemble (AB) qui est le même ensemble que D1 et on a

l’égalité (AB) = D1.
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Exemple :

A

B

C

D

E
F

d1

d2

∆

δ

D

P
On a d1, d2, ∆, δ et D qui sont des droites de P. En effet leur

représentation montre clairement un ensemble de points alignés. De

plus :

A ∈ d1 B ∈ d1 C ∈ ∆ D ∈ δ E ∈ D F ∈ δ

A ∈ d2 B ∈ ∆ C ∈ d2 F ∈ D

On a donc :

d1 = (AB) d2 = (AC) ∆ = (BC) δ = (DF ) (EF ) = D

Définition 2.3 : (Projeté orthogonal)
On appelle projeté orthogonal d’un point sur une droite le point d’intersection de cette droite avec la droite

perpendiculaire passant par le point initial.

Autrement dit : soient P un plan euclidien, M ∈ P, H ∈ P et une droite D ⊂ P.

H est le projeté orthogonal de M sur D ⇔ (MH) ⊥ D et H ∈ D

Exemple :

D

(MH)

M

H

P
Ci-contre, on a graphiquement la proposition suivante qui est vraie :

(MH) ⊥ D ∧ H ∈ D ⇔ H est le projeté orthogonal de M sur D .

On en conclue donc que H est le projeté orthogonal de M sur D .

Définition 2.4 : (Distance d’un point à une droite)
On appelle distance d’un point à une droite la longueur minimale parmi toutes les longueurs des segments qui

relient ce point à un point quelconque de la droite.

Autrement dit : soient P un plan euclidien, M ∈ P, une droite D ⊂ P et X ∈ P.

La longueur XM est la distance entre M et D si et seulement si :

∀Y ∈ D , XM ⩽ Y M
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Exemple :

D

M

X

P
Sachant que le point X est un point qui peut bouger sur D , le but est

de trouver l’emplacement du point X sur la droite D de telle sorte

que la distance entre X et M soit la plus petite possible. On arrive à

voir intuitivement de quel point il s’agit. Mais une intuition n’est pas

une preuve. La réponse est donnée dans la propriété 2.5 qui est la

suivante.

Propriété 2.5 : (Longueur la plus courte d’un point à une droite)
Soient P un plan euclidien, un point M ∈ P, une droite D ⊂ P et H ∈ D le projeté orthogonal de M sur D .

La plus courte distance entre M et n’importe quel point de la droite D est le point H. Autrement dit :

∀X ∈ D , HM ⩽ XM

Preuve :

D

M

X

H

P
Soient :

P un plan euclidien,

D ⊂ P une droite quelconque de P,

M ∈ P un point quelconque de P,

X ∈ D un point quelconque de D

et H ∈ D le projeté orthogonale de M sur D .

Par définition de H (c’est le projeté orthogonale, voire 2.3), MHX

est un triangle rectangle en H.

Donc d’après le théorème de Pythagore :

MH2 + HX2 = MX2

HX2 est un carré donc HX2 ⩾ 0. On en déduit donc :

MH2 ⩽ MX2

Donc d’après la propriété ? ? (croissance de la fonction racine carrée) d’un future chapitre on a :

HM ⩽ MX

Autrement dit : en prenant un X quelconque sur D , la distance HM est plus petite que MX.

Donc la distance la plus courte entre M et D est HM .

Exemple :

Si une personne est dans une prairie, et qu’elle souhaite rejoindre le bord de la route modélisable par une droite, alors

elle doit marcher le long du segment qui est perpendiculaire à la route et qui passe par elle.
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Propriété 2.6 : (Première identité trigonométrique pythagoricienne)
Soient D ⊂ P une droite quelconque de P, M ∈ P un point quelconque de P, X ∈ D un point quelconque de D

et H ∈ D le projeté orthogonale de M sur D .

On a l’égalité suivante : (
cos

(
M̂XH

))2
+

(
sin

(
M̂XH

))2
= 1

Preuve :

D

M

X

H

P
Soient :

P un plan euclidien,

D ⊂ P une droite quelconque de P,

M ∈ P un point quelconque de P,

X ∈ D un point quelconque de D

et H ∈ D le projeté orthogonale de M sur D .

Le triangle MHX est rectangle en H (voire 2.3). Donc d’après les définitions élémentaires des fonctions sinus et

cosinus en termes de côtés d’un triangle rectangle, on a :

cos(M̂XH) = HX

MX

sin(M̂XH) = HM

MX

Ainsi, en élevant au carré les fonctions cosinus et sinus, on obtient :(
cos(M̂XH)

)2
=

(
HX

MX

)2
= HX2

MX2(
sin(M̂XH)

)2
=

(
HM

MX

)2
= HM2

MX2

Si on additionne les carrés des fonctions cosinus et sinus, on obtient :(
cos(M̂XH)

)2
+

(
sin(M̂XH)

)2
= HX2

MX2 + HM2

MX2

= HX2 + HM2

MX2

Comme MHX est un triangle rectangle en H, d’après le théorème de Pythagore on a HX2 + HM2 = MX2, et

donc en remplacant au numérateur du quotient, on obtient :(
cos(M̂XH)

)2
+

(
sin(M̂XH)

)2
= HX2 + HM2

MX2 = MX2

MX2 = 1

Finalement on a montré que
(

cos(M̂XH)
)2

+
(

sin(M̂XH)
)2

= 1.
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Chapitre 3

Fonctions (partie géométrique)
Définition 3.1 : (Fonction)

On appelle fonction ce qui va transformer un élément d’un ensemble de départ en un unique élément d’un ensemble

d’arrivé.

Autrement dit : soient E et F deux ensembles.

On appelle fonction de E dans F une application qui à tout élément x ∈ E associe un unique élément y ∈ F .

On note alors f : E → F la fonction nommé f qui à x ∈ E associe y ∈ F et on écrit y = f(x).

x f y = f(x)Entrée Sortie

Départ dans E Fonction Arrivée dans F

Exemple :

Soit f : R → R la fonction qui à tout réel x associe le réel f(x) = 2x + 3.

On a par exemple :

f(0) = 2 × 0 + 3 = 3 donc à 0 on associe 3

f(1) = 2 × 1 + 3 = 5 donc à 1 on associe 5

f(2) = 2 × 2 + 3 = 7 donc à 2 on associe 7

f(−1) = 2 × (−1) + 3 = 1 donc à − 1 on associe 1

Définition 3.2 : (Image et antécédent)
Soient f : E → F une fonction, x ∈ E et y ∈ F tels que y = f(x).

y est appellée l’image de x par f . En effet, x n’a qu’une seule image.

x est appellé un antécédent de y par f . En effet, y peut avoir plusieurs antécédents.

Exemple :

En reprenant l’exemple précédent : f : R → R est la fonction qui à tout réel x associe le réel f(x) = 2x + 3.

On a :

f(0) = 3 donc 3 est l’image de 0 par f et 0 est un antécédent de 3 par f.

f(1) = 5 donc 5 est l’image de 1 par f et 1 est un antécédent de 5 par f.

f(2) = 7 donc 7 est l’image de 2 par f et 2 est un antécédent de 7 par f.

f(−1) = 1 donc 1 est l’image de − 1 par f et −1 est un antécédent de 1 par f.

Définition 3.3 : (Courbe représentative d’une fonction)
Soient f : E → F une fonction, x ∈ E et y ∈ F tels que y = f(x).

La courbe représentative de la fonction f est l’ensemble des points du plan dont les coordonnées sont les
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couples (x ; f(x)) où x est un élément de l’ensemble de départ E.

On note souvent la courbe représentative de la fonction f par Cf .

Exemple :

∗ En reprenant l’exemple précédent : f : R → R est la fonction qui à tout réel x associe le réel f(x) = 2x + 3.

−2 −1 1 2 3

−2

−1

1

2

3

4

5

6

7

8

Cf

(0 ; 3)

(1 ; 5)

(2 ; 7)

(−1 ; 1)

x

y La courbe représentative de la fonction f est l’ensemble des points du plan

dont les coordonnées sont les couples (x ; 2x + 3) où x ∈ R.

Par exemple, comme f(1) = 5 alors le point de coordonnées (1 ; 5) appartient

à Cf . On notera alors (1 ; 5) ∈ Cf .

Comme plusieurs points on déjà été calculés dans l’exemple précédent, on

peut les placer sur un repère.

On peut donc tracer la courbe représentative de la fonction f .

∗ Sans connaître l’expression d’une fonction, on peut déterminer si une courbe d’un graphique peut être la courbe

représentative d’une fonction ou non.

−2 −1 1 2

−2

−1

1

2

x

y Si on prend par exemple x = 1, on voit que la droite verticale passant par

x = 1 coupe la courbe en deux points.

Donc x = 1 a deux images différentes.

Or une fonction ne peut pas avoir un élément de l’ensemble de départ qui

a plusieurs images.

Donc cette courbe ne peut pas être la courbe représentative d’une fonction.

∗

−2 −1 1 2

−2

−1

1

2

x

y Ici, pour chaque valeur de x, il n’y a qu’une seule image y sur la courbe.

Ainsi, cette courbe peut être la courbe représentative d’une fonction.
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∗

−2 −1 1 2

−2

−1

1

2

x

y Ici, pour chaque valeur de x strictement positive, il y a deux images y sur

la courbe.

Ainsi, cette courbe ne peut pas être la courbe représentative d’une fonction.

Définition 3.4 : (Ensemble de définition d’une fonction)
Soient f une fonction et E un ensemble.

On appelle ensemble de définition de f l’ensemble des éléments de E qui ont une image par f qui existe.

Autrement dit, l’ensemble de définition de f est l’ensemble des x dans E pour lesquels f(x) existe.

On le note généralement Df :

Df = {x ∈ E | f(x) existe}

Exemple :

∗ Soit la courbe suivante :

−2 −1 1 2 3 4

−3

−2

−1

1

2

3

Cf

x

y On peut voir que pour chaque valeur de x strictement comprise entre −1

et 3, il y a une unique image y sur la courbe.

Par contre, pour x < −1 ou x > 3, il n’y a pas d’image y sur la courbe.

De plus, on remarque un point plein en (−1 ; −1), donc f(−1) = −1 existe.

Et on remarque un arc de cercle en (3 ; 3), ce qui annonce que 3 n’a pas

d’image par f et donc que f(3) n’existe pas.

Donc l’ensemble de définition de cette fonction est l’intervalle [−1 ; 3[.

Autrement dit : Df = [−1 ; 3[.

∗ Soit la courbe suivante :

−4 −3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

Cg

x

y
Ici, le fait qu’il n’y ait pas de point plein ou d’arc de cercle sur la partie

gauche de la courbe nous laisse supposer que la courbe se prolonge indéfi-

niment vers la gauche sans s’arrêter en gardant la même allure.

Ainsi, pour tout x < 3, il y a une unique image y sur la courbe.

Pour x ⩾ 3, il n’y a pas d’image sur la courbe montrer par l’arc de cercle

en (3 ; 3) et l’absence de trace de la courbe à droite de x = 3.

Donc Dg =] − ∞ ; 3[.
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∗ Soit la courbe suivante :

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Ch
x

y Ici, la courbe est tracée partout sauf en x = −1 où il y a une discontinuité.

L’ensemble de définition est donc :

Dh = ] − ∞ ; −1[ ∪ ] − 1 ; +∞[ = R \ {−1}.

Propriété 3.5 : (Lecture graphique)
Lorsqu’une fonction f est définie par sa courbe représentative Cf dans un repère orthonormé, on peut lire graphi-

quement les associations entre les antécédents et les images de la façon suivante :

∗ Pour lire l’image y d’un antécédent x :

• On trace la droite verticale passant par x sur l’axe des abscisses jusqu’à Cf formant un point d’intersection.

• On trace ensuite la droite horizontale passant par ce point d’intersection jusqu’à l’axe des ordonnées.

• On lit l’ordonnée de ce point d’intersection avec l’axe des ordonnées. Cette ordonnée est l’image y = f(x).

• Si la droite verticale ne coupe pas la courbe, alors x n’a pas d’image.

• Si la droite verticale coupe la courbe en un seul point, alors l’antécédent x a une image.

• Si la droite verticale coupe la courbe en plusieurs points, alors l’antécédent x a plusieurs images (ce qui

est impossible pour une fonction).

∗ Pour lire un antécédent x d’une image y :

• On trace la droite horizontale passant par f(x) jusqu’à Cf formant un ou plusieurs points d’intersection.

• On trace ensuite la ou les droites verticales passant par ces points d’intersection jusqu’à l’axe des abscisses.

• On lit les abscisses de ces points d’intersection avec l’axe des abscisses. Ces abscisses sont les antécédents

de f(x).

• Si la droite horizontale ne coupe pas la courbe, alors l’image f(x) n’a pas d’antécédent.

• Si la droite horizontale coupe la courbe en plusieurs points, alors l’image f(x) a plusieurs antécédents.

• Si la droite horizontale coupe la courbe en un seul point, alors l’image f(x) a un unique antécédent.
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Exemple :

Soit la courbe suivante :

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
Cf

x

y
∗ Pour lire l’image de 1 :

• On trace la droite verticale (en verte) passant par 1 sur l’axe des

abscisses jusqu’à Cf formant un point d’intersection.

• On trace ensuite la droite horizontale passant par ce point d’intersec-

tion jusqu’à l’axe des ordonnées.

• On lit l’ordonnée de ce point d’intersection avec l’axe des ordonnées.

Cette ordonnée est l’image y = f(1) = −2.

∗ Pour lire les antécédents de 1 :

• On trace la droite horizontale (en rouge) passant par 1 sur l’axe des ordonnées jusqu’à Cf formant trois

points d’intersection.

• On trace ensuite les droites verticales passant par ces points d’intersection jusqu’à l’axe des abscisses.

• On lit les abscisses de ces points d’intersection avec l’axe des abscisses. Ces abscisses sont les antécédents

de y = 1, qui sont −2, −1 et 2.

Propriété 3.6 : (Appartenance d’un point à une courbe représentative)
Soient A un point du plan de coordonnées (xA ; yA), f une fonction et Cf la courbe représentative de f .

On a :

A(xA ; yA) ∈ Cf ⇐⇒ yA = f(xA)

Autrement dit, un point A appartient à la courbe représentative Cf d’une fonction f si et seulement si l’ordonnée

de A est l’image par f de l’abscisse de A.

Exemple :

Soit la courbe suivante :

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
Cf

A

B

C

D

x

y
∗ Pour le point A(−1 ; 0) :

• L’abscisse de A est xA = −1 et l’ordonnée de A est yA = 0.

• On lit graphiquement l’image de −1 par f à l’aide de la courbe :

f(−1) = 1.

• On compare les résultats : comme yA ̸= f(xA), alors A /∈ Cf .

∗ Pour le point B(0 ; −1) :

• L’abscisse de B est xB = 0 et l’ordonnée de B est yB = −1.

• On lit graphiquement l’image de 0 par f à l’aide de la courbe :

f(0) = −1.

• On compare les résultats : comme yB = f(xB), alors B ∈ Cf .
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∗ On cherche à savoir si −1 est l’image de 1 par f :

• On place le point C(1 ; −1) sur le graphique.

• On remarque que C ∈ Cf .

• Donc −1 est bien l’image de 1 par f .

∗ On cherche à savoir si −1 est l’image de 2 par f :

• On place le point D(2 ; −1) sur le graphique.

• On remarque que D /∈ Cf .

• Donc −1 n’est pas l’image de 2 par f .

Définition 3.7 : (Equation)
On appelle équation une égalité avec une ou plusieurs inconnues généralement notées par des lettres.

Exemple :

∗ 2x + 3 = 7 est une équation à une inconnue x.

∗ x2 − 5x + 6 = 0 est une équation à une inconnue x.

∗ 2x + 3y = 7 est une équation à deux inconnues x et y.

∗ x2 + y2 = 1 est une équation à deux inconnues x et y.

∗ 2 + 3 = 5 est une égalité, mais ce n’est pas une équation car il n’y a pas d’inconnue.

∗ 7 − 4 = 3 est une égalité sans inconnue, donc ce n’est pas une équation.

∗ 2x + 1 est une expression algébrique sans égalité, donc ce n’est pas une équation.

∗ x2 − 5 est une expression sans égalité, donc ce n’est pas une équation.

Définition 3.8 : (Solution d’une équation)
Soit une équation à une ou plusieurs inconnues.

On appelle solution de l’équation toute valeur qui, en remplaçant les inconnues dans l’équation, transforme

l’égalité en une égalité vraie.

On appelle ensemble des solutions de l’équation l’ensemble de toutes les solutions de l’équation. Cet ensemble

est généralement noté S .

Exemple :

∗ Pour l’équation 2x + 3 = 7 :

• En remplaçant x par 2, on obtient 2 × 2 + 3 = 7 qui est une égalité vraie. Donc 2 est une solution de

l’équation.

• En remplaçant x par 3 (dans l’équation ci-dessus), on obtient 2 × 3 + 3 = 7 qui est une égalité fausse. Donc

3 n’est pas une solution de l’équation.

• L’ensemble des solutions de l’équation est S = {2}.

∗ Pour l’équation x2 − 5x + 6 = 0 :

• En remplaçant x par 2, on obtient 22 − 5 × 2 + 6 = 0 qui est une égalité vraie. Donc 2 est une solution de

l’équation.

• En remplaçant x par 3, on obtient 32 − 5 × 3 + 6 = 0 qui est une égalité vraie. Donc 3 est une solution de

l’équation.
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• En remplaçant x par 4, on obtient 42 − 5 × 4 + 6 = 0 qui est une égalité fausse. Donc 4 n’est pas une

solution de l’équation.

• L’ensemble des solutions de l’équation est S = {2 ; 3}.

Définition 3.9 : (Résoudre une équation)
Résoudre une équation, c’est déterminer son ensemble de solutions.

Propriété 3.10 : (Résolution graphique d’une équation)
Soient f une fonction définie sur R et Cf la courbe représentative de f dans un repère orthonormé.

1. Soit y0 un réel.

Pour résoudre l’équation f(x) = y0 (rappel : ici l’inconnu est x), on peut procéder graphiquement de la même

façon que pour lire les antécédents de l’image y0 (voir la propriété 3.5 page 20).

2. Soient g une autre fonction définie sur R et Cg la courbe représentative de g dans le même repère orthonormé.

Résoudre l’équation f(x) = g(x), revient à trouver les antécédents de f(x) et de g(x) qui ont la même image,

c’est-à-dire les abscisses des points d’intersection des courbes Cf et Cg.

Exemple :

Soit Cf telle que représentée ci-dessous :

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
Cf

x

y
∗ Pour résoudre l’équation f(x) = 2 :

• On trace la droite horizontale (en rouge) passant par 2 sur l’axe des

ordonnées jusqu’à Cf formant un seul point d’intersection.

• On trace ensuite la droite verticale (en rouge) passant par ce point

d’intersection jusqu’à l’axe des abscisses.

• On lit l’abscisse de ce point d’intersection avec l’axe des abscisses. Par

lecture graphique, la solution est environ x ≈ 2,6 à 0,1 près.

• L’ensemble des solutions de l’équation est donc S ≈ {2,6}.

∗ Pour résoudre l’équation f(x) = 1 :

• On trace la droite horizontale (en vert) passant par 1 sur l’axe des ordonnées jusqu’à Cf formant trois

points d’intersection.

• On trace ensuite les droites verticales (en vert) passant par ces points d’intersection jusqu’à l’axe des

abscisses.

• On lit les abscisses de ces points d’intersection avec l’axe des abscisses. Ces abscisses sont les solutions de

l’équation f(x) = 1, c’est-à-dire x = −2, x = −1 ou x = 2.

• L’ensemble des solutions de l’équation est donc S = {−2 ; −1 ; 2}.
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−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
Cf

Cg

x

y
∗ Pour résoudre graphiquement l’équation f(x) = g(x) :

• On trace les courbes représentatives Cf et Cg sur le même graphique.

• Les solutions sont les abscisses des points d’intersection des deux

courbes. Par lecture graphique, les solutions sont x = −2, x = 0 et

x = 2. Donc S = {−2 ; 0 ; 2}.

Définition 3.11 : (Inéquation)
On appelle inéquation une inégalité avec une ou plusieurs inconnues généralement notées par des lettres.

Exemple :

∗ 2x + 3 < 7 est une inéquation à une inconnue x.

∗ x2 − 5x + 6 ⩾ 0 est une inéquation à une inconnue x.

∗ 2x + 3y ⩽ 7 est une inéquation à deux inconnues x et y.

∗ x2 + y2 > 1 est une inéquation à deux inconnues x et y.

∗ 2 + 3 = 5 est une égalité sans une inconnue, donc ce n’est pas une inéquation.

∗ 7x − 4 = 3 est une égalité avec une inconnue, donc ce n’est pas une inéquation.

∗ x2 − 5 est une expression sans inégalité, donc ce n’est pas une inéquation.

Définition 3.12 : (Solution d’une inéquation)
Soit une inéquation à une ou plusieurs inconnues.

On appelle solution de l’inéquation toute valeur qui, en remplaçant les inconnues dans l’inéquation, transforme

l’inégalité en une inégalité vraie.

On appelle ensemble des solutions de l’inéquation l’ensemble de toutes les solutions de l’inéquation. Cet

ensemble est généralement noté S .

Définition 3.13 : (Résoudre une inéquation)
Résoudre une inéquation, c’est déterminer son ensemble de solutions.

Propriété 3.14 : (Résolution graphique d’une inéquation)
Soient f une fonction définie sur R et Cf la courbe représentative de f dans un repère orthonormé.

1. Soit y0 ∈ R.

Résoudre l’inéquation f(x) < y0 (ou f(x) ⩽ y0, ou f(x) > y0, ou f(x) ⩾ y0), revient à trouver les antécédents

de f(x) dont l’image est inférieure (ou inférieure ou égale, ou supérieure, ou supérieure ou égale) à y0.

On peut procéder graphiquement de la même façon que pour lire les antécédents de l’image y0 (voir la propriété

3.5 page 20), puis en repérant les parties de la courbe qui sont en-dessous (ou au-dessus) de la droite horizontale

d’équation y = y0 on associe les antécédants à ces parties qui sont les solutions de l’inéquation.

2. Soient g une autre fonction définie sur R et Cg la courbe représentative de g dans le même repère orthonormé.

Résoudre l’inéquation f(x) < g(x) (ou f(x) ⩽ g(x), ou f(x) > g(x), ou f(x) ⩾ g(x)), revient à trouver les

antécédents de f(x) et de g(x) dont l’image par f est inférieure (ou inférieure ou égale, ou supérieure, ou
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supérieure ou égale) à l’image par g.

On peut procéder graphiquement de la même façon que pour lire les antécédents de l’image commune aux

deux fonctions (voir la propriété 3.10 page 23), puis en repérant les parties de la courbe Cf qui sont en-dessous

(ou au-dessus) de la courbe Cg on associe les antécédants à ces parties qui sont les solutions de l’inéquation.

Exemple :

Soit Cf telle que représentée ci-dessous :

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
Cf

[ ] [[ ] [ x

y
∗ Pour résoudre l’inéquation f(x) < 1 :

• On trace la droite horizontale (en rouge) passant par 1 sur l’axe des

ordonnées jusqu’à Cf formant trois points d’intersection.

• On trace ensuite les droites verticales (en rouge) passant par les points

d’intersection jusqu’à l’axe des abscisses.

• On repère les parties de la courbe qui sont en-dessous de cette droite.

• On lit les abscisses des points des parties de la courbe correspondantes.

Ces abscisses sont les solutions de l’inéquation f(x) < 1, c’est-à-dire

x < −2, ou −1 < x < 2.

• L’ensemble des solutions de l’inéquation est donc :

S = ] − ∞ ; −2[ ∪ ] − 1 ; 2[ .

∗ Pour résoudre l’inéquation f(x) ⩾ −1 :

• On trace la droite horizontale (en vert) passant par −1 sur l’axe des ordonnées jusqu’à Cf formant trois

points d’intersection.

• On trace ensuite les droites verticales (en vert) passant par les points d’intersection jusqu’à l’axe des

abscisses.

• On repère les parties de la courbe qui sont au-dessus de cette droite.

• On lit les abscisses des points des parties de la courbe correspondantes. Ces abscisses sont les solutions de

l’inéquation f(x) ⩾ −1, c’est-à-dire −2, 6 ⩽ x ⩽ 0 ou x ⩾ 1, 6.

• L’ensemble des solutions de l’inéquation est donc S = [−2, 6 ; 0] ∪ [2 ; +∞[ = R\]1, 6 ; +∞[.

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
Cf

Cg

[ ] [ x

y
∗ Soient Cf et Cg telles que représentées ci-contre.

Pour résoudre graphiquement l’inéquation f(x) < g(x) :

• On repère les points d’intersection des deux courbes Cf et Cg. Par

lecture graphique, les abscisses de ces points d’intersection sont x = −2,

x = 0 et x = 2.

• On repère les parties de Cf qui sont stritctement en-dessous de Cg.

• On lit les abscisses des points de ces parties de la courbe. Ces abscisses

sont les solutions de l’inéquation f(x) < g(x), c’est-à-dire x < −2 ou

0 < x < 2.

• L’ensemble des solutions de l’inéquation est donc :

S = ] − ∞ ; −2[ ∪ ]0 ; 2[ .
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Définition 3.15 : (Tableau de signes)
Soit f une fonction définie sur un intervalle I ⊂ R.

On appelle tableau de signes de f un tableau qui permet de visualiser le signe de f(x) sur I.

Exemple :

Soit Cf telle que représentée ci-dessous :

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
Cf

x

y On cherche à dresser le tableau de signes de f sur R.

• On repère les points où la courbe Cf coupe l’axe des abscisses. Par lecture

graphique, ces points ont pour abscisses x = −2 et x = 2.

• On repère les parties de la courbe où f est positive qui sont au-dessus (en

vert) de l’axe des abscisses, et où f est négative qui est en-dessous (en

rouge) de l’axe des abscisses.

• On en déduit le tableau de signes suivant :

x

f(x)

−∞ −2 2 +∞

+ 0 − 0 +

On peut ainsi lire que f(x) > 0 pour x < −2 ou x > 2, que f(x) < 0 pour −2 < x < 2, et que f(x) = 0 pour x = −2

ou x = 2.

Autrement dit :

• l’ensemble des solutions de l’inéquation f(x) > 0 est S = ] − ∞ ; −2[ ∪ ]2 ; +∞[ ,

• f(x) < 0 ⇐⇒ S = ] − 2 ; 2[ ,

• f(x) = 0 ⇐⇒ S = {−2 ; 2}.

Définition 3.16 : (Variation d’une fonction)
Soit f une fonction définie sur un intervalle I ⊂ R.

On appelle variation de f la façon dont f(x) évolue lorsque x parcourt I dans le sens croissant.

• Si f(x) augmente lorsque x augmente, on dit que f est croissante.

Autrement dit, pour tous réels a et b de I, si a < b alors f(a) ⩽ f(b).

• Si f(x) diminue lorsque x augmente, on dit que f est décroissante.

Autrement dit, pour tous réels a et b de I, si a < b alors f(a) ⩾ f(b).

• Si f(x) ne change pas lorsque x augmente, on dit que f est constante.

Autrement dit, pour tous réels a et b de I, si a < b alors f(a) = f(b).

• On dit que f est strictement croissante (respectivement f est strictement décroissante) si les inégalités

précédentes sont strictes.
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Exemple :

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
Cf

x

y Soit Cf telle que représentée ci-contre.

On remarque que f est :

• décroissante pour x ∈] − ∞ ; −1],

• croissante pour x ∈ [−1 ; 1],

• décroissante pour x ∈ [1 ; +∞[.

Définition 3.17 : (Extremum local)
Soit f une fonction définie sur un intervalle I ⊂ R.

On appelle extremum local tout point de la courbe représentative de f où il y a un changement de variation de f .

• Si f passe de croissante à décroissante, on dit que f admet un maximum local en ce point.

• Si f passe de décroissante à croissante, on dit que f admet un minimum local en ce point.

Exemple :

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3
Cf

x

y Soit Cf telle que représentée ci-contre.

On remarque que :

• (−1 ; −1) est un extremum local, en particulier un minimum local car f

passe de décroissante à croissante en ce point,

• (1 ; 2) est un extremum local, en particulier un maximum local car f passe

de croissante à décroissante en ce point.

Définition 3.18 : (Tableau de variations)
Soit f une fonction définie sur un intervalle I ⊂ R.

On appelle tableau de variations de f un tableau qui permet de visualiser les variations de f sur I.

Exemple :

En utilisant la fonction f de l’exemple précédent, on peut dresser le tableau de variations suivant :

x

f

−∞ −1 1 +∞

+∞+∞

−1−1

22

−∞−∞

On peut ainsi lire que f est :

• décroissante sur ] − ∞ ; −1],

• croissante sur [−1 ; 1],

• décroissante sur [1 ; +∞[,

• avec un minimum local égal à

−1 en x = −1

• et un maximum local égal à 2

en x = 1.
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Chapitre 4

Proportions et pourcentages
Définition 4.1 : (Population)

On appelle population un ensemble d’individus ou d’objets. Comme pour les ensembles (voir la définition 1.1 page

3), une population est souvent notée par une lettre majuscule (par exemple E, F , P , etc.) et ses éléments sont les

individus ou les objets de la population.

Exemple :

∗ L’ensemble des élèves d’une classe est une population. On peut noter cette population E si on le souhaite.

∗ L’ensemble des habitants d’une ville est une population. On peut noter H1 les habitants de la ville no1, H2 les

habitants de la ville no2, etc.

∗ L’ensemble des voitures d’un parking est une population.

∗ L’ensemble des livres d’une bibliothèque est une population.

Définition 4.2 : (Sous-population)
Soit E une population.

On appelle sous-population de E une population F qui est un sous-ensemble de E, c’est-à-dire que tous les

éléments de F sont aussi des éléments de E. On a donc F ⊂ E.

Exemple :

∗ Dans une classe E de 30 élèves, l’ensemble F des filles de la classe est une sous-population de E.

∗ Dans une ville H de 100 000 habitants, l’ensemble A des habitants âgés de plus de 65 ans est une sous-population

de H.

∗ Dans un parking P de 200 voitures, l’ensemble D des voitures diesel est une sous-population de P .

∗ Dans une bibliothèque B de 10 000 livres, l’ensemble R des romans est une sous-population de B.

Définition 4.3 : (Effectif d’une population)
Soit E une population.

On appelle effectif d’une population le nombre d’éléments de cette population. L’effectif de E est généralement

noté nE .

Exemple :

En utilisant les populations de l’exemple précédent :

∗ Dans une classe E de 30 élèves, l’effectif de la population E est nE = 30. Si la sous-population F des filles de la

classe contient 18 filles, alors l’effectif de la sous-population F est nF = 18.

∗ Dans une ville H de 100 000 habitants, l’effectif de la population H est nH = 100 000. Si la sous-population

A des habitants âgés de plus de 65 ans contient 20 000 habitants, alors l’effectif de la sous-population A est

nA = 20 000.

∗ Dans un parking P de 200 voitures, l’effectif de la population P est nP = 200. Si la sous-population D des

voitures diesel contient 80 voitures, alors l’effectif de la sous-population D est nD = 80.
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∗ Dans une bibliothèque B de 10 000 livres, l’effectif de la population B est nB = 10 000. Si la sous-population R

des romans contient 6 000 livres, alors l’effectif de la sous-population R est nR = 6 000.

Définition 4.4 : (Proportion)
Soient deux populations E et F telles que F ⊂ E.

On appelle proportion de F dans E le nombre p, généralement exprimé en pourcentage, qui indique la part de F

par rapport à E. La proportion p de F dans E est donnée par la formule :

p = nF

nE

où nF est l’effectif de la population F et nE est l’effectif de la population E.

Exemple :

En utilisant les populations de l’exemple précédent :

∗ Dans une classe E de 30 élèves, l’effectif de la population E est nE = 30. Si la sous-population F des filles de la

classe contient 18 filles, alors l’effectif de la sous-population F est nF = 18. La proportion de filles dans la classe

est donc :

p = nF

nE
= 18

30 = 0, 6 = 60%.

∗ Dans une ville H de 100 000 habitants, l’effectif de la population H est nH = 100 000. Si la sous-population

A des habitants âgés de plus de 65 ans contient 20 000 habitants, alors l’effectif de la sous-population A est

nA = 20 000. La proportion d’habitants âgés de plus de 65 ans dans la ville est donc :

p = nA

nH
= 20 000

100 000 = 0, 2 = 20%.

∗ Dans un parking P de 200 voitures, l’effectif de la population P est nP = 200. Si la sous-population D des

voitures diesel contient 80 voitures, alors l’effectif de la sous-population D est nD = 80. La proportion de voitures

diesel dans le parking est donc :

p = nD

nP
= 80

200 = 0, 4 = 40%.

∗ Dans une bibliothèque B de 10 000 livres, l’effectif de la population B est nB = 10 000. Si la sous-population

R des romans contient 6 000 livres, alors l’effectif de la sous-population R est nR = 6 000. La proportion de

romans dans la bibliothèque est donc :

p = nR

nB
= 6 000

10 000 = 0, 6 = 60%.

Propriété 4.5 : (Proportion entre 0 et 1)
Soient E une population, F une sous-population de E et p la proportion de F dans E. On a toujours :

0 ⩽ p ⩽ 1

Preuve :
Soient E une population, F une sous-population de E et p la proportion de F dans E. Par définition 4.4 de la

proportion, on a :

p = nF

nE

où nF est l’effectif de la population F et nE est l’effectif de la population E.

Comme F ⊂ E, on a forcément nF ⩽ nE . De plus, les effectifs sont des nombres entiers naturels, donc nF ⩾ 0 et
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nE > 0. On en déduit que :

0 ⩽ nF ⩽ nE

En divisant cette inégalité par le nombre strictement positif nE , on obtient :

0
nE

⩽
nF

nE
⩽

nE

nE

c’est-à-dire :

0 ⩽ p ⩽ 1

Propriété 4.6 : (Pourcentage de pourcentage)
Soient E, A et B trois populations telles que B ⊂ A ⊂ E et p1 la proportion de A dans E et p2 la proportion de B

dans A. La proportion p de B dans E est donnée par la formule :

p = p1 × p2

E

A
B

Preuve :
Soient E, A et B trois populations telles que B ⊂ A ⊂ E, p1 la proportion de A dans E et p2 la proportion de B

dans A. Par définition de la proportion, on a :

p1 = nA

nE
et p2 = nB

nA

où nA, nB et nE sont respectivement les effectifs des populations A, B et E.

En multipliant ces deux égalités, on obtient :

p1 × p2 = nA

nE
× nB

nA
= nB

nE

Or, par définition de la proportion, on a aussi :

p = nB

nE

où p est la proportion de B dans E. On en déduit que :

p = p1 × p2

Exemple :

Dans une ville H de 100 000 habitants, l’effectif de la population H est nH = 100 000. Si la sous-population A des

habitants âgés de plus de 65 ans contient 20 000 habitants, alors l’effectif de la sous-population A est nA = 20 000. La

proportion d’habitants âgés de plus de 65 ans dans la ville est donc :

p1 = nA

nH
= 20 000

100 000 = 0, 2 = 20%.

Parmi ces 20 000 habitants, la sous-population B des habitants âgés de plus de 75 ans contient 5 000 habitants, donc

l’effectif de la sous-population B est nB = 5 000. La proportion d’habitants âgés de plus de 75 ans parmi les habitants

âgés de plus de 65 ans est donc :

p2 = nB

nA
= 5 000

20 000 = 0, 25 = 25%.
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La proportion p d’habitants âgés de plus de 75 ans dans la ville est donc :

p = p1 × p2 = 0, 2 × 0, 25 = 0, 05 = 5%.

On peut aussi vérifier ce résultat en calculant directement la proportion de B dans H :

p = nB

nH
= 5 000

100 000 = 0, 05 = 5%.
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Chapitre 5

Multiples et diviseurs
Définition 5.1 : (Multiple, divise, diviseur, divisibilité)

Soient a ∈ Z et b ∈ Z∗.

On dit que a est un multiple de b si et seulement s’il existe un nombre entier relatif k tel que :

a = b × k

Dans ce cas, on dit aussi que b est un diviseur de a ou que b divise a. On dit aussi que a est divisible par b.

Exemple :

∗ 15 est un multiple de 3 car 15 = 3 × 5. On dit aussi que 3 est un diviseur de 15 ou que 3 divise 15. On dit aussi

que 15 est divisible par 3.

∗ −24 est un multiple de 4 car −24 = 4 × (−6). On dit aussi que 4 est un diviseur de −24 ou que 4 divise −24.

On dit aussi que −24 est divisible par 4.

∗ 0 est un multiple de tous les entiers relatifs non nuls car pour tout entier relatif non nul b, on a 0 = b × 0. On

dit aussi que tout entier relatif non nul est un diviseur de 0 ou que tout entier relatif non nul divise 0. On dit

aussi que 0 est divisible par tous les entiers relatifs non nuls.

∗ Aucun entier relatif non nul n’est un multiple de 0, car il n’existe pas d’entier relatif k tel que a = 0 × k pour un

entier relatif non nul a.

Propriété 5.2 : (Somme de multiples)
Soient a ∈ Z, b ∈ Z et c ∈ Z∗.

Si a et b sont des multiples de c, alors a + b est un multiple de c.

Exemple :

Soient a = 15, b = −24 et c = 3.

Comme 15 = 3 × 5, on a 15 est un multiple de 3.

Comme −24 = 3 × (−8), on a −24 est un multiple de 3.

Donc, 15 + (−24) = −9 est un multiple de 3 car −9 = 3 × (−3).

Corolaire 5.3 : (Somme de multiple de 3 )
Soient a ∈ Z et b ∈ Z.

Si a et b sont des multiples de 3, alors a + b est un multiple de 3.

Preuve :
Soient a ∈ Z et b ∈ Z et supposons que a et b sont des multiples de 3.

Par définition 5.1 des multiples, il existe des entiers relatifs k1 et k2 tels que :a = 3 × k1

b = 3 × k2

En additionnant ces deux égalités, on obtient :

a + b = 3 × k1 + 3 × k2 = 3 × (k1 + k2)
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Or, k1 + k2 est un entier relatif car la somme de deux entiers relatifs est un entier relatif. Donc, par définition 5.1

des multiples, a + b est un multiple de 3.

Propriété 5.4 : (Critères de divisibilité)
Soient a ∈ Z.

• a est un multiple de 2 si et seulement si le chiffre des unités de a est 0, 2, 4, 6 ou 8.

• a est un multiple de 3 ⇐⇒ la somme des chiffres de a est un multiple de 3.

• a est un multiple de 4 ⇐⇒ le nombre formé par les deux derniers chiffres de a est un multiple de 4

(généralement pas utile à connaître).

• a est un multiple de 5 ⇐⇒ le chiffre des unités de a est 0 ou 5.

• a est un multiple de 6 ⇐⇒ a est un multiple de 2 et de 3 (généralement pas utile à connaître).

• a est un multiple de 7 ⇐⇒ le double du chiffre des unités de a soustrait du nombre formé par les autres

chiffres de a est un multiple de 7.

• a est un multiple de 8 ⇐⇒ le nombre formé par les trois derniers chiffres de a est un multiple de 8 (généralement

pas utile à connaître).

• a est un multiple de 9 ⇐⇒ la somme des chiffres de a est un multiple de 9.

• a est un multiple de 10 ⇐⇒ le chiffre des unités de a est 0.

Exemple :

∗ a = 2 346 est un multiple de 2 car le chiffre des unités est 6.

∗ b = 2 346 est un multiple de 3 car la somme des chiffres est 2 + 3 + 4 + 6 = 15 et 15 est un multiple de 3.

∗ c = 2 344 est un multiple de 4 car le nombre formé par les deux derniers chiffres est 44 et 44 est un multiple de 4.

∗ d = 2 345 est un multiple de 5 car le chiffre des unités est 5.

∗ e = 2 346 est un multiple de 6 car c’est un multiple de 2 et de 3.

∗ f = 2 352 est un multiple de 7 car le double du chiffre des unités soustrait du nombre formé par les autres

chiffres est 235 − 2 × 2 = 231 et 231 est un multiple de 7.

∗ g = 2 348 est un multiple de 8 car le nombre formé par les trois derniers chiffres est 348 et 348 est un multiple

de 8.

∗ h = 2 343 est un multiple de 9 car la somme des chiffres est 2 + 3 + 4 + 3 = 12 et 12 est un multiple de 9.

∗ i = 2 340 est un multiple de 10 car le chiffre des unités est 0.

Définition 5.5 : (Nombre pair, impair)
On appelle nombre pair un entier relatif qui est un multiple de 2.

Autrement dit : soit a ∈ Z,

a est un nombre pair ⇐⇒ ∃k ∈ Z tel que a = 2 × k.

On appelle nombre impair un entier relatif qui n’est pas un multiple de 2.

Autrement dit : soit a ∈ Z,

a est un nombre impair ⇐⇒ ∄k ∈ Z tel que a = 2 × k

⇐⇒ ∃k ∈ Z tel que a = 2 × k + 1
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Exemple :

∗ 4 est un nombre pair car 4 = 2 × 2.

∗ −12 est un nombre pair car −12 = 2 × (−6).

∗ 0 est un nombre pair car 0 = 2 × 0.

∗ 5 est un nombre impair car 5 = 2 × 2 + 1.

∗ −7 est un nombre impair car −7 = 2 × (−4) + 1.

∗ 1 est un nombre impair car 1 = 2 × 0 + 1.

Propriété 5.6 : (Carré d’un nombre pair, impair)
Le carré d’un nombre pair est un nombre pair.

Le carré d’un nombre impair est un nombre impair.

Preuve :
Soit a ∈ Z.

∗ Supposons que a est un nombre pair. Par définition 5.5 des nombres pairs :

∃k ∈ Z, a = 2 × k

En élevant cette égalité au carré, on obtient :

a2 = (2 × k)2 = 4 × k2 = 2 × (2 × k2)

Or, 2 × k2 est un entier relatif car le produit de deux entiers relatifs est un entier relatif. Donc, par définition

5.5 des nombres pairs, a2 est un nombre pair.

∗ Supposons maintenant que a est un nombre impair. Par définition 5.5 des nombres impairs :

∃k ∈ Z, a = 2 × k + 1

En élevant cette égalité au carré, on obtient :

a2 = (2 × k + 1)2 = 4 × k2 + 4 × k + 1 = 2 × (2 × k2 + 2 × k) + 1

Or, 2 × k2 + 2 × k est un entier relatif car la somme de deux entiers relatifs est un entier relatif. Donc, par

définition 5.5 des nombres impairs, a2 est un nombre impair.

Exemple :

∗ Le carré de 4 est 16 et 16 est un nombre pair.

∗ Le carré de −12 est 144 et 144 est un nombre pair.

∗ Le carré de 0 est 0 et 0 est un nombre pair.

∗ Le carré de 5 est 25 et 25 est un nombre impair.

∗ Le carré de −7 est 49 et 49 est un nombre impair.

∗ Le carré de 1 est 1 et 1 est un nombre impair.
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Chapitre 6

Vecteurs du plan
Définition 6.1 : (Vecteur)

Soient A et B deux points distincts du plan.

On appelle vecteur −−→
AB la translation qui transforme le point A en B.

Le point A est appelé origine du vecteur −−→
AB et le point B est appelé extrémité du vecteur −−→

AB.

Le vecteur −−→
AB est donc défini par :

1. sa direction : la droite (AB),

2. son sens : de A vers B,

3. sa norme : la distance AB.

Ainsi le vecteur −−→
AB peut être représenté sur le plan par une flèche allant de A vers B.

Exemple :

Soient A et B deux points distincts du plan tels ci-contre.

Le vecteur −−→
AB est la translation qui transforme le point A en B.

Le point A est l’origine du vecteur −−→
AB et le point B est l’extrémité du vecteur −−→

AB.

Le vecteur −−→
AB est défini par :

1. sa direction : la droite (AB) représenté en pointillé,

2. son sens : de A vers B représenté par la pointe de la flèche en rouge,

3. sa norme : la distance AB représenté par le segment en rouge.

A

B

−−→
AB

Définition 6.2 : (Vecteurs égaux)
Soient A, B, C et D quatre points du plan tels que A ̸= B et C ̸= D.

On dit que les vecteurs −−→
AB et −−→

CD sont égaux si et seulement s’ils ont la même direction, le même sens et la même

norme.

On note alors :
−−→
AB = −−→

CD

Ainsi le vecteur −−→
AB peut être représenté sur le plan par toute flèche ayant la même direction, le même sens et la

même norme que −−→
AB.

Exemple :

Soient A, B, C et D quatre points du plan tels que A ̸= B et C ≠ D

comme ci-contre.

Les vecteurs −−→
AB et −−→

CD sont égaux car ils ont la même direction (la

droite (AB) est parallèle à la droite (CD)), le même sens (de A vers

B et de C vers D) et la même norme (AB = CD).

On note donc :
−−→
AB = −−→

CD

Ainsi le vecteur −−→
AB peut être représenté sur le plan par toute flèche

ayant la même direction, le même sens et la même norme que −−→
AB.

A

B

−−→
AB

C

D

−−→
AB

−−→
AB
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Définition 6.3 : (Vecteur nul)
Soit A un point du plan.

On appelle vecteur nul, noté −→0 , le vecteur −→
AA.

Propriété 6.4 : (Parallélogramme et vecteurs égaux)
Soient A, B, C et D quatre points du plan tels que A ̸= B et C ̸= D.

−−→
AB = −−→

CD ⇐⇒ ABDC est un parallélogramme (éventuellement aplati).

Exemple :

Soient A, B, C et D quatre points du plan tels que A ̸= B et C ≠ D

comme ci-contre.

Les vecteurs −−→
AB et −−→

CD sont égaux car ils ont la même direction (la

droite (AB) est parallèle à la droite (CD)), le même sens (de A vers

B et de C vers D) et la même norme (AB = CD).

Donc, le quadrilatère ABDC est un parallélogramme.
A

B

C

D

−−→
AB

−−→
AB

Définition 6.5 : (Représentant d’un vecteur)
Soient −→u un vecteur, A et B deux points du plan.

On dit que le vecteur −−→
AB est un représentant du vecteur −→u si et seulement si :

−−→
AB = −→u

Ainsi, on notera généralement un vecteur par une lettre minuscule (exemple : −→u ) plutot que par un de ses réprésentants

(exemple : −−→
AB).

Exemple :

Soient A, B, C et D quatre points du plan tels que A ̸= B et C ≠ D

comme ci-contre.

Le vecteur −−→
AB est un représentant du vecteur −→u car −→u = −−→

AB.

Le vecteur −−→
CD est aussi un représentant du vecteur −→u car −→u = −−→

CD.

A

B

C

D
−→u

−→u

Définition 6.6 : (Vecteur opposé)

Soient −→u un vecteur, A et B deux points du plan tels que −→u = −−→
AB.

On appelle vecteur opposé de −→u , noté −−→u , le vecteur −−→
BA.

On note alors :

−−→u = −
−−→
AB = −−→

BA
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Exemple :

Soient A et B deux points du plan tels que −→u = −−→
AB comme ci-contre.

Le vecteur opposé de −→u est le vecteur −−→u = −
−−→
AB = −−→

BA.

Ainsi, si −→u a pour origine le point A et pour extrémité le point B, alors −−→u a pour

origine le point B et pour extrémité le point A.

A

B

−→u
−−→u

Définition 6.7 : (Somme de vecteurs)

Soient −→u et −→v deux vecteurs, A, B et C trois points du plan tels que −→u = −−→
AB et −→v = −−→

BC.

On appelle somme des vecteurs −→u et −→v , notée −→u + −→v , le vecteur −→
AC.

Exemple :

Soient A, B et C trois points du plan tels que −→u = −−→
AB et −→v = −−→

BC

comme ci-contre.

La somme des vecteurs −→u et −→v est le vecteur −→u + −→v = −→
AC qui est le

résultat de la translation qui transforme le point A en B puis le point

B en C.

A

B

C

−→u −→v

−→u + −→v

Propriété 6.8 : (Soustraction de vecteurs)
Soient −→u et −→v deux vecteurs.

Soustraire par un vecteur revient à additionner par son vecteur opposé.

Ainsi on a :
−→u − −→v = −→u + (−−→v )

Exemple :

Soient −→u et −→v deux vecteurs comme ci-desous.

Pour trouver le vecteur −→u − −→v , on commence par tracer le vecteur opposé de −→v , c’est-à-dire −−→v . Ensuite, on

additionne les vecteurs −→u et −−→v .

On obtient ainsi le vecteur −→u − −→v .

−→u

−→v −−→v

−→u

−−→v

−→u − −→v
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Propriété 6.9 : (Règles de calculs sur les vecteurs)
Soient −→u , −→v et −→w trois vecteurs.

• La somme de vecteurs est commutative c’est-à-dire : −→u + −→v = −→v + −→u

• La somme de vecteurs est associative c’est-à-dire : (−→u + −→v ) + −→w = −→u + (−→v + −→w )

• La somme de vecteurs possède un élément neutre c’est-à-dire : −→u + −→0 = −→u

• Tout vecteur possède un élément symétrique c’est-à-dire : −→u + (−−→u ) = −→0

Propriété 6.10 : (Relation de Chasles)
Soient A, B et C trois points du plan.

On a :
−−→
AB + −−→

BC = −→
AC

A

B

C

−−→
AB

−−→
BC

−−→
AB + −−→

BC = −→
AC

Exemple :

∗ En utilisant la relation de Chasles, on peut par exemple simplifier l’expression suivante :

−−→
AB + −−→

BC + −−→
CD = −→

AC + −−→
CD

= −−→
AD

∗ On peut aussi simplifier des expressions plus complexes comme par exemple :

−−→
AB + −−→

CD + −−→
BC + −−→

EF + −−→
DE = −→

AC + −−→
CD + −−→

EF + −−→
DE

= −−→
AD + −−→

EF + −−→
DE

= −−→
AD + −−→

DE + −−→
EF

= −→
AF

∗ Ou encore :
−−→
AB + −−→

BC −
−→
AC = −→0

Propriété 6.11 : (Somme de vecteurs de même origine)

Soient A, B, C et D tels que −−→
AB et −→

AC sont deux vecteurs ayant la même origine A.

On a :
−−→
AB + −→

AC = −−→
AD ⇐⇒ ABDC est un parallélogramme
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Exemple :

Soient A, B, C et D tels que −−→
AB + −→

AC = −−→
AD.

A

B

D

C

−−→
AB

−−→
AD

−→
AC

On en déduit que le quadrilatère ABDC est un parallélogramme et réciproquement.

Définition 6.12 : (Produit d’un vecteur par un scalaire)

Soient −→u un vecteur, k ∈ R et A et B deux points du plan tels que −→u = −−→
AB.

On appelle produit du vecteur −→u par le scalaire k, noté k × −→u , le vecteur −→
AC tel que :

• si k > 0, alors C est le point du plan tel que A, B et C sont alignés et AC = k × AB,

• si k < 0, alors C est le point du plan tel que A, B et C sont alignés et AC = |k| × AB,

• si k = 0, alors C est le point tel que −→
AC = −→0 . Autrement dit, C = A.

Exemple :

Soient −→u un vecteur, k ∈ R et A et B deux points du plan tels que −→u = −−→
AB comme ci-dessous.

A

B−→u

∗ Si k = 2, alors le point C est tel que A, B et C sont alignés dans le même sens et AC = 2 × AB. Ainsi, le

vecteur 2 × −→u = 2 ×
−−→
AB = −→

AC.

A B

C
−→2u

∗ Si k = −1, alors le point C est tel que A, B et C sont alignés dans des sens opposés et AC = | − 1| × AB = AB.

Ainsi, le vecteur −1 × −→u = −1 ×
−−→
AB = −→

AC.

A

B

C

−→−u
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Chapitre 7

Valeur absolue et distance dans le plan
Définition 7.1 : (Encadrement décimal, amplitude)

Soient x ∈ R, a ∈ D et b ∈ D tels que a < b.

On appelle encadrement décimal de x l’encadrement :

a ⩽ x ⩽ b

On appelle amplitude de cet encadrement la valeur b − a.

Exemple :

1,4 1,41 1,42
[ ]√

2

0, 01 0, 01

Un encadrement décimal de
√

2 est par exemple :

1, 40 ⩽
√

2 ⩽ 1, 42

L’amplitude de cet encadrement est 1, 42 − 1, 40 = 0, 02.

Définition 7.2 : (Valeur absolue)
Soit x ∈ R.

On appelle valeur absolue de x, notée |x|, la distance entre x et 0.

Autrement dit, la valeur absolue de x est la fonction définie par :

|x| =

x si x ⩾ 0

−x si x < 0

Exemple :

∗ La valeur absolue de 5 est |5| = 5 car la distance entre 5 et 0 est égale à 5.

∗ La valeur absolue de -3 est | − 3| = −(−3) = 3 car la distance entre -3 et 0 est égale à 3.

Propriété 7.3 : (Propriétés de la valeur absolue)
Soient x et y deux réels.

• La valeur absolue est toujours positive ou nulle : |x| ⩾ 0

• La valeur absolue de 0 est nulle : |0| = 0

• La valeur absolue d’un produit est le produit des valeurs absolues : |x × y| = |x| × |y|

• La valeur absolue d’un quotient est le quotient des valeurs absolues :
∣∣∣∣x

y

∣∣∣∣ = |x|
|y|

(pour y ̸= 0)

• Inégalité triangulaire : |x + y| ⩽ |x| + |y|
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Définition 7.4 : (Distance entre deux abscisses)
Soient x1 ∈ R et x2 ∈ R.

On appelle distance entre les abscisses x1 et x2, notée d(x1; x2), la valeur absolue de leur différence, c’est-à-dire :

d(x1; x2) = |x2 − x1|

Exemple :

Soient A et B d’abscisses xA = −2, 65 et xB = 3, 48. La distance entre les abscisses de A et B est :

AB = d(xA; xB) = |xB − xA| = |3, 48 − (−2, 65)| = |3, 48 + 2, 65| = |6, 13| = 6, 13

−2,65 3,48

A B[ ]
6, 13

Remarque : On aurait aussi pu calculer la distance entre les abscisses de A et B en faisant :

AB = BA = d(xB ; xA) = |xA − xB | = | − 2, 65 − 3, 48| = | − 6, 13| = 6, 13

Propriété 7.5 : (Intervalle et valeur absolue)
Soient a ∈ R et r ∈ R+.

∗ L’ensemble des réels x tels que la distance entre x et a est inférieure à r vérifient :

d(x; a) ⩽ r ⇐⇒ |x − a| ⩽ r ⇐⇒ a − r ⩽ x ⩽ a + r

ce qui correspond à l’intervalle [a − r; a + r].

∗ L’ensemble des réels x tels que la distance entre x et a est strictement inférieure à r vérifient :

d(x; a) < r ⇐⇒ |x − a| < r ⇐⇒ a − r < x < a + r

ce qui correspond à l’intervalle ]a − r; a + r[.

Exemple :

Soient a = 2 et r = 0, 5.

∗ L’ensemble des réels x tels que la distance entre x et 2 est inférieure à 0,5 est l’intervalle :

d(x; 2) ⩽ 0, 5 ⇐⇒ |x − 2| ⩽ 0, 5

⇐⇒ 2 − 0, 5 ⩽ x ⩽ 2 + 0, 5

⇐⇒ 1, 5 ⩽ x ⩽ 2, 5

c’est-à-dire l’intervalle [1, 5; 2, 5].

1,5 2 2,5
[ ]

0, 5 0, 5

∗ L’ensemble des réels x tels que la distance entre x et 2 est strictement inférieure à 0,5 est l’intervalle :

d(x; 2) < 0, 5 ⇐⇒ |x − 2| < 0, 5 ⇐⇒ 1, 5 < x < 2, 5

c’est-à-dire l’intervalle ]1, 5; 2, 5[.
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1,5 2 2,5
] [

0, 5 0, 5
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Chapitre 8

Fonctions (partie algébrique)
Propriété 8.1 : (Calcul de l’image)

Soient f une fonction définie sur son ensemble de définition Df et a ∈ Df .

Pour calculer l’image de a par la fonction f , on remplace chaque occurrence de x dans l’expression de f(x) par la

valeur numérique de a puis on effectue les calculs. Ainsi, on obtient f(a).

Exemple :

Soit f la fonction définie sur Df = R et par f(x) = 2x2 − 3x + 4.

∗ Pour calculer l’image de 2 par la fonction f , on remplace chaque occurrence de x dans l’expression de f(x) par

2 puis on effectue les calculs :

f(2) = 2 × 22 − 3 × 2 + 4 = 8 − 6 + 4 = 6

Ainsi, l’image de 2 par la fonction f est égale à 6.

∗ Pour calculer l’image de −1 par la fonction f , on remplace chaque occurrence de x dans l’expression de f(x)

par −1 puis on effectue les calculs :

f(−1) = 2 × (−1)2 − 3 × (−1) + 4 = 2 + 3 + 4 = 9

Ainsi, l’image de −1 par la fonction f est égale à 9.

Propriété 8.2 : (Calculs des antécédants)
Soient f une fonction définie sur son ensemble de définition Df et b ∈ R.

Pour calculer les antécédants de b par la fonction f , on résout l’équation f(x) = b dans l’ensemble Df .

Exemple :

Soit f la fonction définie sur Df = R et par f(x) = 3x + 4.

∗ Pour calculer les antécédants de 10 par la fonction f , on résout l’équation f(x) = 10 dans l’ensemble R :

f(x) = 10 ⇐⇒ 3x + 4 = 10

⇐⇒ 3x + 4 − 4 = 10 − 4

⇐⇒ 3x = 6

⇐⇒ 3x

3 = 6
3

⇐⇒ x = 2

Ainsi, le seul antécédant de 10 par la fonction f est 2.

On conclue en donnant l’esemble des solutions : S = {2}.

∗ Pour calculer les antécédants de 1 par la fonction f , on résout l’équation f(x) = 1 dans l’ensemble R :

f(x) = 1 ⇐⇒ 3x + 4 = 1

⇐⇒ 3x + 4 − 4 = 1 − 4

⇐⇒ 3x = −3

⇐⇒ 3x

3 = − 3
3
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⇐⇒ x = −1

Ainsi, le seul antécédant de 1 par la fonction f est −1.

On conclue en donnant l’esemble des solutions : S = {−1}.

Définition 8.3 : (Valeur interdite)
Soient f une fonction définie sur son ensemble de définition Df .

On appelle valeur interdite de la fonction f toute valeur que la fonction f ne peut pas transformer.

Ainsi, si a est une valeur interdite de la fonction f , alors a /∈ Df .

Exemple :

Soit f la fonction définie par f(x) = 1
x .

0 est une valeur interdite de la fonction f car on ne peut pas diviser par 0. en effet, f(0) = 1
0 n’existe pas et donc

0 /∈ Df .

Propriété 8.4 : (Règles élémentaires des valeurs interdites)
Dans R :

∗ on ne peut pas diviser par 0 ;

∗ la racine carrée d’un nombre négatif n’existe pas.

Propriété 8.5 : (Calculs de l’ensemble de définition)
Soient f une fonction définie par une expression algébrique.

Pour calculer l’ensemble de définition de la fonction f , on détermine les valeurs interdites de f en utilisant les

règles élémentaires des valeurs interdites puis on en déduit l’ensemble de définition Df .

Exemple :

∗ Soit f la fonction définie par f(x) = 2x+1
x−3 .

Pour calculer l’ensemble de définition de la fonction f , on détermine les valeurs interdites de f .

On ne peut pas diviser par 0, donc le dénominateur x − 3 ne doit pas être égal à 0 :

x − 3 ̸= 0 ⇐⇒ x − 3 + 3 ̸= 0 + 3

⇐⇒ x ̸= 3

Ainsi, 3 est une valeur interdite de la fonction f . On en déduit que l’ensemble de définition de la fonction f est

tous les nombres réels sauf 3 :

Df = R \ {3} =] − ∞; 3[∪]3; +∞[

∗ Soit g la fonction définie par g(x) =
√

5 − x.

Pour calculer l’ensemble de définition de la fonction g, on détermine les valeurs interdites de g. La racine carrée

d’un nombre négatif n’existe pas, donc l’expression 5 − x doit être positive ou nulle :

5 − x ⩾ 0 ⇐⇒ 5 − x − 5 ⩾ 0 − 5

⇐⇒ −x ⩾ −5

⇐⇒ −x × (−1) ⩽ −5 × (−1)

⇐⇒ x ⩽ 5
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Ainsi, tous les réels inférieurs ou égaux à 5 sont des valeurs autorisées pour la fonction g. On en déduit que

l’ensemble de définition de la fonction g est :

Dg =] − ∞; 5]

Propriété 8.6 : (Appartenance d’un point à une courbe représentative)
Soient f une fonction définie sur son ensemble de définition Df , et Cf sa courbe représentative dans un repère.

Un point M(xM ; yM ) appartient à Cf si et seulement si f(xM ) = yM .

Exemple :

Soit f la fonction définie par f(x) = x2 − x + 1 et Cf sa courbe représentative dans un repère.

∗ Pour savoir si le point A(1; 2) appartient à Cf , on calcule f(1) :

f(1) = 12 − 1 + 1 = 1 − 1 + 1 = 1

Comme f(1) = 1 ̸= yA, le point A n’appartient pas à Cf .

∗ Pour savoir si le point B(2; 3) appartient à Cf , on calcule f(2) :

f(2) = 22 − 2 + 1 = 4 − 2 + 1 = 3

Comme f(2) = 3 = yB , le point B appartient à Cf .

∗ Pour savoir si le point C(3; 5) appartient à Cf , on calcule f(3) :

f(3) = 32 − 3 + 1 = 9 − 3 + 1 = 7

Comme f(3) = 7 ̸= yC , le point C n’appartient pas à Cf .

Définition 8.7 : (Tableau de valeurs)
Soit f une fonction définie sur son ensemble de définition Df .

On appelle Tableau de valeurs d’une fonction f un tableau présentant des valeurs de l’ensemble de définition Df

et les images correspondantes par la fonction f .

Exemple :

Soit f la fonction définie par f(x) = x2 − 2x + 3.

Pour construire un tableau de valeurs de la fonction f on choisie arbitrairement des valeurs x ∈ Df , on calcule les

images correspondantes puis on remplit le tableau suivant :

x −2 −1 0 1 2 3 4 5

f(x) 11 6 3 2 3 6 11 18

Propriété 8.8 : (Construction d’une courbe représentative)
Soit f une fonction définie sur son ensemble de définition Df .

Pour construire la courbe représentative de la fonction f , on construit un tableau de valeurs de f en choisissant

arbitrairement autant de valeurs x ∈ Df que nécessaire puis on place les points correspondants dans un repère et on

relie ces points par une courbe lisse.
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Exemple :

En reprenant l’exemple précédent, on commence par anticiper l’échelle du repère en identifiant les valeurs minimales

et maximales des abscisses et des ordonnées à partir du tableau de valeurs. Ici, les abscisses varient de −2 à 5 et les

ordonnées de 2 à 18. Ensuite, on construit la courbe représentative Cf de la fonction f définie par f(x) = x2 − 2x + 3 :

x

f(x)

0−2 −1 1 2 3 4 5

2

4

6

8

10

12

14

16

18

Cf
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Chapitre 9

Repérage dans le plan
Définition 9.1 : (Repère cartésien)

On appelle repère cartésien d’un plan un triplet de points O, I et J non alignés dans ce plan. On note (O; I, J) ce

repère, avec :

∗ O l’origine du repère ;

∗ I le point unitaire de l’axe des abscisses ;

∗ OI la longueur unité de l’axe des abscisses ;

∗ (OI) l’axe des abscisses ;

∗ J le point unitaire de l’axe des ordonnées ;

∗ OJ la longueur unité de l’axe des ordonnées ;

∗ (OJ) l’axe des ordonnées .

Définition 9.2 : (Coordonnées d’un point)
Soit (O; I, J) un repère cartésien.

Pour tout point M du plan, on appelle coordonnées de M dans le repère (O; I, J) l’unique couple de nombres

(xM , yM ) avec :

∗ xM l’abscisse de M ;

∗ yM l’ordonnée de M .

Définition 9.3 : (Repère orthogonal, repère normé, repère orthonormé)
On appelle repère orthogonal un repère cartésien dans lequel les axes des abscisses et des ordonnées sont

perpendiculaires.

On appelle repère normé un repère cartésien dans lequel les longueurs unités des axes des abscisses et des ordonnées

sont égales.

On appelle repère orthonormé (ou repère orthonormal) un repère cartésien qui est à la fois orthogonal et

normé.

Exemple :

Repère :

O I

J

A(1; 2)

Repère orthogonal :

O I

J

A(1; 2)
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Repère normé :

O I

J

A(1; 2)

Repère orthonormé :

O I

J

A(1; 2)

Propriété 9.4 : (Mileu d’un segment)
Soient (O; I, J) un repère et A(xA; yA) et B(xB ; yB) deux points du plan.

Les coordonnées du milieu M du segment [AB] sont données par la formule suivante :

M

(
xA + xB

2 ; yA + yB

2

)

Exemple :

Soient A(2; 3), B(4; 7) et C(−1; 2) deux points du plan dans le repère (O; I, J).

Les coordonnées du milieu M1 du segment [AB] sont données par la formule suivante :

M1

(
2 + 4

2 ; 3 + 7
2

)
= M1(3; 5)

Les coordonnées du milieu M2 du segment [AC] sont données par la formule suivante :

M2

(
2 + (−1)

2 ; 3 + 2
2

)
= M2

(
1
2 ; 5

2

)
Les coordonnées du milieu M3 du segment [BC] sont données par la formule suivante :

M3

(
4 + (−1)

2 ; 7 + 2
2

)
= M3

(
3
2 ; 9

2

)

O I

J

A(2; 3)

B(4; 7)

C(−1; 2)

M1(3; 5)

M2
( 1

2 ; 5
2
)

M3
( 3

2 ; 9
2
)

48



Propriété 9.5 : (Longueur d’un segment)
Soient (O; I, J) un repère et A(xA; yA) et B(xB ; yB) deux points du plan.

La longueur du segment [AB], notée AB, est donnée par la formule suivante :

AB =
√

(xB − xA)2 + (yB − yA)2

Exemple :

Soient A(2; 3), B(4; 7) et C(−1; 2) trois points du plan dans un repère (O; I, J).

La longueur du segment [AB] est :

AB =
√

(xB − xA)2 + (yB − yA)2

=
√

(4 − 2)2 + (7 − 3)2

=
√

22 + 42

=
√

4 + 16

=
√

20

=
√

4 × 5

=
√

4 ×
√

5

= 2
√

5

La longueur du segment [AC] est :

AC =
√

(xC − xA)2 + (yC − yA)2

=
√

(−1 − 2)2 + (2 − 3)2

=
√

(−3)2 + (−1)2

=
√

9 + 1

=
√

10

La longueur du segment [BC] est :

BC =
√

(xC − xB)2 + (yC − yB)2

=
√

(−1 − 4)2 + (2 − 7)2

=
√

(−5)2 + (−5)2

=
√

25 + 25

=
√

50

=
√

25 × 2

=
√

25 ×
√

2

= 5
√

2
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Chapitre 10

Fonctions affines
Définition 10.1 : (Fonction affine)

Soient a ∈ R et b ∈ R deux constantes.

On appelle fonction affine toute fonction f définie sur R par une expression de la forme :

f(x) = ax + b

Le nombre a est appelé le coefficient directeur de la fonction affine f .

Le nombre b est appelé l’ordonnée à l’origine de la fonction affine f .

Exemple :

∗ f(x) = 3x + 2 est une fonction affine de coefficient directeur 3 et d’ordonnée à l’origine 2.

∗ g(x) = −5x + 7 est une fonction affine de coefficient directeur −5 et d’ordonnée à l’origine 7.

∗ h(x) = 1
2 x −

√
2 est une fonction affine de coefficient directeur 1

2 et d’ordonnée à l’origine −
√

2.

∗ k(x) = −x est une fonction affine de coefficient directeur −1 et d’ordonnée à l’origine 0.

∗ m(x) = 4 est une fonction affine de coefficient directeur 0 et d’ordonnée à l’origine 4.

∗ n(x) = 2
x + 4 n’est pas une fonction affine car l’expression de n(x) n’est pas de la forme ax + b.

∗ p(x) = x2 + 3 n’est pas une fonction affine car l’expression de p(x) n’est pas de la forme ax + b.

∗ q(x) =
√

x − 1 n’est pas une fonction affine car l’expression de q(x) n’est pas de la forme ax + b.

∗ r(x) =
√

3x + 2 n’est pas une fonction affine car l’expression de r(x) n’est pas de la forme ax + b.

∗ s(x) =
√

3x +
√

2 est une fonction affine de coefficient directeur
√

3 et d’ordonnée à l’origine
√

2.

∗ t(x) =
√

3x +
√

2 n’est pas une fonction affine car l’expression de t(x) n’est pas de la forme ax + b.

Propriété 10.2 : (Courbe représentative d’une fonction affine)
Soient a ∈ R et b ∈ R deux constantes.

Soit f une fonction affine définie par f(x) = ax + b.

La courbe représentative Cf de la fonction affine f est une droite.

Cette droite passe par le point de coordonnées (0; b) appellé ordonnée à l’origine et son coefficient directeur a

détermine l’inclinaison de la droite par rapport à l’axe des abscisses :

∗ si a > 0, la droite Cf est croissante ;

∗ si a < 0, la droite Cf est décroissante ;

∗ si a = 0, la droite Cf est horizontale.

A partir d’un point de la droite, on peut utiliser le coefficient directeur pour déterminer un second point de la

droite en utilisant le fait que a = variation des ordonnées
variation des abscisses : pour une variation des abscisses de 1 unité, la variation des

ordonnées est égale à a unités.

Exemple :

∗ Soit f1 une fonction affine définie par f1(x) = 2x + 3.
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L’ordonnée à l’origine de f1 est 3 donc la courbe représentative de f1 est une droite passant par le point (0; 3)

et de coefficient directeur 2. Pour tracer cette droite, on peut partir du point (0; 3) et utiliser le coefficient

directeur pour trouver un second point : en avançant de 1 unité sur l’axe des abscisses, on avance de 2 unités

sur l’axe des ordonnées. Ainsi, le point (1; 5) appartient à la droite.

−3 −2 −1 1 2 3 4 5

1

2

3

4

5

6
Cf1

(0; 3)
+1

+2

(1; 5)

x

f1(x)

∗ Soit f2 une fonction affine définie par f2(x) = −x + 1.

L’ordonnée à l’origine de f2 est 1 donc la courbe représentative de f2 est une droite passant par le point (0; 1)

et de coefficient directeur −1. Pour tracer cette droite, on peut partir du point (0; 1) et utiliser le coefficient

directeur pour trouver un second point : en avançant de 1 unité sur l’axe des abscisses, on recule de 1 unité sur

l’axe des ordonnées. Ainsi, le point (1; 0) appartient à la droite.

−1 1 2 3

−1

1

2

Cf2

(0; 1)
+1

−1

(1; 0)
x

f2(x)

∗ Soit f3 une fonction affine définie par f3(x) = 4.

L’ordonnée à l’origine de f3 est 4 et le coefficient directeur est 0, donc la courbe représentative de f3 est une

droite horizontale passant par le point (0; 4).

−3 −2 −1 1 2 3 4 5

1

2

3

4

5

6

Cf3(0; 4)

x

f3(x)
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∗ Soit f4 une fonction affine définie par f4(x) = 3
4 x + 1.

L’ordonnée à l’origine de f4 est 1 donc la courbe représentative de f4 est une droite passant par le point (0; 1)

et de coefficient directeur 3
4 . Pour tracer cette droite, on peut partir du point (0; 1) et utiliser le coefficient

directeur pour trouver un second point : en avançant de 4 unités sur l’axe des abscisses, on avance de 3 unités

sur l’axe des ordonnées. Ainsi, le point (4; 4) appartient à la droite.

−2 −1 1 2 3 4 5 6

1

2

3

4

5

6
Cf4

(0; 1)

(4; 4)

+4

+3

x

f4(x)

Propriété 10.3 : (Variation d’une fonction affine)
Soient a ∈ R et b ∈ R deux constantes.

Soit f une fonction affine définie par f(x) = ax + b.

∗ Si a > 0 alors f est strictement croissante sur R. Le tableau de variation de f est le suivant :

x

f

−∞ +∞

−∞−∞

+∞+∞

∗ Si a < 0 alors f est strictement décroissante sur R . Le tableau de variation de f est le suivant :

x

f

−∞ +∞

+∞+∞

−∞−∞

∗ Si a = 0 alors f est constante sur R. Le tableau de variation de f est le suivant :

x

f

−∞ +∞

bb bb

Exemple :

Soit f définie par f(x) = 2x + 1.

Le coefficient directeur de f est 2 qui est strictement positif donc f est strictement croissante sur R. Le tableau de
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variation de f est le suivant :

x

f

−∞ +∞

−∞−∞

+∞+∞

On peut comparer avec la courbe représentative de f :

−2 −1 1 2 3 4
−1

1

2

3 Cf

x

f(x)

Propriété 10.4 : (Tableau de signe d’une fonction affine)
Soient a ∈ R∗ et b ∈ R deux constantes.

Soit f une fonction affine définie par f(x) = ax + b.

L’équation f(x) = 0 admet pour solution x = − b
a .

Le signe de la fonction affine f dépend du signe de son coefficient directeur a :

∗ Si a > 0, le tableau de signe de f est le suivant :

x

f

−∞ − b
a

+∞

− 0 +

∗ Si a < 0, le tableau de signe de f est le suivant :

x

f

−∞ − b
a

+∞

+ 0 −

Preuve :
Soient a ∈ R∗ et b ∈ R deux constantes.

Soit f une fonction affine définie par f(x) = ax + b. L’équation f(x) = 0 s’écrit :

ax + b = 0
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En soustrayant b des deux membres, on obtient :

ax = −b

En divisant les deux membres par a (qui est non nul), on obtient :

x = − b

a

Ainsi, l’équation f(x) = 0 admet pour solution x = − b
a .

Le signe de la fonction affine f dépend du signe de son coefficient directeur a :

∗ Si a > 0, alors f est strictement croissante sur R (propriété 10.3).

Ainsi, pour x < − b
a , on a f(x) < f

(
− b

a

)
= 0 et pour x > − b

a , on a f(x) > f
(
− b

a

)
= 0.

Le tableau de signe de f est donc le suivant :

x

f

−∞ − b
a

+∞

− 0 +

∗ Si a < 0, alors f est strictement décroissante sur R (propriété 10.3).

Ainsi, pour x < − b
a , on a f(x) > f

(
− b

a

)
= 0 et pour x > − b

a , on a f(x) < f
(
− b

a

)
= 0.

Le tableau de signe de f est donc le suivant :

x

f

−∞ − b
a

+∞

+ 0 −

Exemple :

Soit f définie par f(x) = −3x + 6.

Le coefficient directeur de f est −3 et l’ordonnée à l’origine est 6 donc la fonction s’annule pour :

x = − b

a
= − 6

−3 = 2

Comme le coefficient directeur est strictement négatif, le tableau de signe de f est le suivant :

x

f

−∞ 2 +∞

+ 0 −
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Chapitre 11

Evolutions et pourcentages
Définition 11.1 : (Coefficient multiplicateur)

Soient une valeur initiale VI ∈ R et une valeur finale VF ∈ R.

On appelle coefficient multiplicateur le nombre CM tel que :

VF = VI×CM

VI VF

×CM

Exemple :

Une montre coûte 150 euros en janvier. En juin, elle coûte 180 euros. On a donc le schéma suivant :

150 180

×CM

On peut déterminer le coefficient multiplicateur :

VF = VI × CM ⇐⇒ 180 = 150 × CM

⇐⇒ CM = 180
150

⇐⇒ CM = 1, 2

Donc le prix de la montre a été multiplié par 1, 2 entre janvier et juin.

Définition 11.2 : (Variation absolue)
On appelle variation absolue la différence VF − VI entre une valeur finale VF et une valeur initiale VI .

Exemple :

Reprenons l’exemple de la montre qui coûte 150 euros en janvier et 180 euros en juin.

La variation absolue du prix de la montre entre janvier et juin est :

VF − VI = 180 − 150 = 30

Donc le prix de la montre a augmenté de 30 euros entre janvier et juin.

Définition 11.3 : (Taux d’évolution)
On appelle taux d’évolution (ou variation relative), noté t, le quotient entre la variation absolue VF − VI et la

valeur initiale VI . On a donc :

t = VF − VI

VI

VI VF

×CM

t
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Propriété 11.4 : (Augmentation ou diminition)
Soient une valeur initiale VI ∈ R et une valeur finale VF ∈ R.

Le taux d’évolution t permet de déterminer si la valeur finale VF est une augmentation ou une diminution par

rapport à la valeur initiale VI :

∗ Si t > 0, alors VF > VI et la valeur finale est une augmentation de t.

∗ Si t < 0, alors VF < VI et la valeur finale est une diminution de |t|.

∗ Si t = 0, alors VF = VI et il n’y a pas de variation.

Exemple :

∗ Reprenons l’exemple de la montre qui coûte 150 euros en janvier et 180 euros en juin.

Le taux d’évolution du prix de la montre entre janvier et juin est :

t = VF − VI

VI

= 180 − 150
150

= 30
150

= 0, 2

= 0, 2 × 1

= 0, 2 × 100
100

= 0, 2 × 100
100

= 20
100

= 20%

Donc le prix de la montre a une augmentation de 20% entre janvier et juin.

∗ Un sac coûte 80 euros en magasin A et 60 euros en magasin B.

Le taux d’évolution du prix du sac entre le magasin A et le magasin B est :

t = VF − VI

VI

= 60 − 80
80

= −20
80

= −0, 25

= −0, 25 × 1

= −0, 25 × 100
100

= −0, 25 × 100
100

= −25
100

= −25%

Donc le prix du sac a une diminution de 25% entre le magasin A et le magasin B.
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Propriété 11.5 : (Coefficient multiplicateur et taux d’évolution)
Soient t le taux d’évolution et CM le coefficient multiplicateur entre une valeur initiale et une valeur finale.

On a la relation suivante entre le taux d’évolution t et le coefficient multiplicateur CM :

CM = 1 + t

⇐⇒ t = CM − 1

Exemple :

En connaissant le taux d’évolution t, on peut déterminer le coefficient multiplicateur CM à l’aide de la relation

CM = 1 + t.

De même, en connaissant le coefficient multiplicateur CM , on peut déterminer le taux d’évolution t à l’aide de la

relation t = CM − 1.

Taux d’évolution t Coefficient multiplicateur CM

10% 1 + 10
100 = 1, 1

1, 2 − 1 = 0, 2 = 20% 1, 2

30% 1 + 30
100 = 1, 3

1, 87 − 1 = 0, 87 = 87% 1, 87

100% 1 + 100
100 = 2

3 − 1 = 200% 3

−10% 1 + −10
100 = 0, 9

0, 75 − 1 = −0, 25 = −25% 0, 75

−37% 1 + −37
100 = 0, 63

0, 5 − 1 = −0, 5 = −50% 0, 5

−100% 1 + −100
100 = 0

Propriété 11.6 : (Erreur classique des taux d’évolutions)
Une augmentation du taux d’évolution t suivie d’une diminution du même taux d’évolution t ne ramène pas à la

valeur initiale.

Exemple :

Un élève possède 10 euros. Il reçoit une augmentation de 10% de son argent :

Donc le coefficient multiplicateur CM est donné par :

CM = 1 + 10
100 = 1, 1

Le nouveau montant VF est donc donné par :

VF = VI × CM = 10 × 1, 1 = 11

Donc après une augmentation de 10%, l’élève possède 11 euros.

Si ensuite le prix diminue de 10%, le nouveau coefficient multiplicateur CM2 est donné par :

CM2 = 1 − 10
100 = 0, 9

57



Le nouveau montant VF2 est donc donné par :

VF2 = VF × CM2 = 11 × 0, 9 = 9, 9

Donc après une augmentation de 10% puis une diminution de 10%, le montant possédé par l’élève est de 9, 90 euros et

non pas de 10 euros.

Propriété 11.7 : (Evolution réciproque)
Soient une valeur initiale VI ∈ R, une valeur finale VF ∈ R et CM le coefficient multiplicateur entre VI et VF .

Le coefficient multiplicateur CMr
de l’évolution réciproque est donnée par la relation suivante :

CMr
= 1

CM

VI VF

×CM

÷CM

⇐⇒ VI VF

×CM

×CMr

Exemple :

En reprenant l’exemple précédent, un élève possède 10 euros. Il reçoit une augmentation de 10% de son argent :

Donc le coefficient multiplicateur CM est donné par :

CM = 1 + 10
100 = 1, 1

Le nouveau montant VF est donc donné par :

VF = VI × CM = 10 × 1, 1 = 11

Donc après une augmentation de 10%, l’élève possède 11 euros.

Pour retrouver la valeur initiale de 10 euros, il faut appliquer une évolution réciproque avec le coefficient multiplicateur

CMr donné par :

CMr
= 1

CM
= 1

1, 1 = 10
11

Ce qui correspond à un taux dévolution de :

t = CMr
− 1 = 10

11 − 1 = 10 − 11
11 = −1

11 ≈ −0, 0909 ≈ −9, 09%

Donc une diminution d’environ 9, 09%.

Le nouveau montant VI2 est donc donné par :

VI2 = VF × CMr
= 11 × 10

11 = 10 = VI

Donc après une évolution réciproque, l’élève possède 10 euros, ce qui correspond à la valeur initiale.

10 11
+10%

≈ −9, 09%

×1, 1

÷1, 1
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Propriété 11.8 : (Evolutions successives)
Soient une valeur initiale VI ∈ R, une valeur intermédiaire V1 ∈ R, une valeur finale VF ∈ R et CM1 , CM2 les

coefficients multiplicateurs des évolutions successives entre VI et V1 puis entre V1 et VF .

Le coefficient multiplicateur CM de l’évolution globale est donnée par la relation suivante :

CM = CM1 × CM2

VI V1 VF

×CM1 ×CM2

×CM

Exemple :

Une marchandise coûte 100 euros. Son prix augmente de 8% puis baisse de 7%.

Le coefficient multiplicateur CM1 de la première évolution est donné par :

CM1 = 1 + 8
100 = 1, 08

Le coefficient multiplicateur CM2 de la deuxième évolution est donné par

CM2 = 1 − 7
100 = 0, 93

Le coefficient multiplicateur CM de l’évolution globale est donc donné par :

CM = CM1 × CM2 = 1, 08 × 0, 93 = 1, 0044

Ce qui correspond à un taux d’évolution de :

t = CM − 1 = 1, 0044 − 1 = 0, 0044 = 0, 44%

Donc le prix de la marchandise a augmenté de 0, 44% après les deux évolutions successives.

Son nouveau prix VF est donc donné par :

VF = VI × CM = 100 × 1, 0044 = 100, 44

Donc après les deux évolutions successives, la marchandise coûte 100, 44 euros.

100 108 100, 44

×1, 08

+8%

×0, 93

−7%

×1, 0044

+0, 44%
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Chapitre 12

Calculs des vecteurs
Définition 12.1 : (Base)

Soient −→
i et −→

j deux vecteurs non colinéaires du plan.

On appelle base du plan le couple de vecteurs
(−→

i ; −→
j

)
.

Exemple :

−→
i

−→
j

−→
i

−→
j

−→
i

−→
j

Dans chaque cas, les vecteurs −→
i et −→

j ne sont pas colinéaires donc le couple
(−→

i ; −→
j

)
est une base du plan.

Définition 12.2 : (Combinaison linéaire)

Soient −→
i et −→

j deux vecteurs du plan tel que
(−→

i ; −→
j

)
soit une base du plan.

On dit que −→u est une combinaison linéaire des deux vecteurs −→
i et −→

j , s’il existe deux réels x et y tels que :

−→u = x
−→
i + y

−→
j

Exemple :

O −→
i

−→
j 2−→

i

4−→
j

−→u

Dans ce repère, le vecteur −→u est une combinaison linéaire

des vecteurs −→
i et −→

j car on a :

−→u = 2−→
i + 4−→

j

Théorème 12.3 : (Existence et unicité de la combinaison linéaire)

Soient −→
i et −→

j deux vecteurs du plan tel que
(−→

i ; −→
j

)
soit une base du plan.

Tout vecteur −→u du plan possède une unique combinaison linéaire des deux vecteurs −→
i et −→

j .

Autrement dit, soit −→
V R2 l’ensemble des vecteurs du plan, on a :

∀−→u ∈
−→
V R2 , ∃!(x; y) ∈ R2, −→u = x

−→
i + y

−→
j
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Exemple :

O −→
i

−→
j 2−→

i

4−→
j

−→u

−→u

2−→
i

4−→
j

Dans ce repère, le vecteur −→u ne possède pas plusieurs

combinaisons linéaires des vecteurs −→
i et −→

j .

Définition 12.4 : (Coordonnées d’un vecteurs)

Soient −→
i et −→

j deux vecteurs du plan tel que
(−→

i ; −→
j

)
soit une base du plan et soit −→u un vecteur du plan.

On appelle coordonnées de −→u dans la base
(−→

i ; −→
j

)
le couple de réels (x; y) tel que :

−→u = x
−→
i + y

−→
j

On note alors :
−→u =

x

y



Exemple :

O −→
i

−→
j

2−→
i

4−→
j

−→u−→v

−3−→
i

−1−→
j

Dans la base
(−→

i ; −→
j

)
, le vecteur −→u a pour combinai-

son linéaire :
−→u = 2−→

i + 4−→
j

Donc les coordonnées de −→u dans la base
(−→

i ; −→
j

)
sont :

−→u =

2

4



Dans la base
(−→

i ; −→
j

)
, le vecteur −→v a pour combinai-

son linéaire :
−→v = −3−→

i − 1−→
j

Donc les coordonnées de −→v dans la base
(−→

i ; −→
j

)
sont :

−→v =

−3

−1


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Propriété 12.5 : (Coordonnées d’un représentant de vecteur)

Soit A(xA; yA) et B(xB ; yB) deux points du plan et soit −−→
AB le vecteur dirigé de A vers B.

Les coordonnées du vecteur −−→
AB sont données par :

−−→
AB =

xB − xA

yB − yA



Exemple :

O −→
i

−→
j

A

B

−3−→
i

1−→
j

−−→
AB

Soient les points A(2; 3) et B(−1; 4).

Les coordonnées du vecteur −−→
AB sont données par :

−−→
AB =

−1 − 2

4 − 3

 =

−3

1



Propriété 12.6 : (Caractérisation de l’égalité de deux vecteurs par les coordonnées)
Deux vecteurs sont égaux si et seulement si ils ont les mêmes coordonnées.

Autrement dit, soient −→u et −→v deux vecteurs du plan tels que :

−→u =

x1

y1

 et −→v =

x2

y2


Alors −→u = −→v si et seulement si x1 = x2 et y1 = y2.

Exemple :

Soient A(0; 3), B(3; 4), C(−2; 1) et D(1; 2).

Les coordonnées des vecteurs −−→
AB et −−→

CD sont données par :

−−→
AB =

3 − 0

4 − 3

 =

3

1

 et −−→
CD =

1 − (−2)

2 − 1

 =

3

1


Donc les vecteurs −−→

AB et −−→
CD ont les mêmes coordonnées.

Donc −−→
AB = −−→

CD.

O −→
i

−→
j

A

B
−−→
AB

3−→
i

1−→
j

C

D
−−→
CD

3−→
i

1−→
j
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Propriété 12.7 : (Coordonnées d’une somme de vecteurs)

Soit un repère du plan
(

O; −→
i ; −→

j
)

et soient −→u et −→v deux vecteurs du plan tels que :

−→u =

x1

y1

 et −→v =

x2

y2


Alors les coordonnées du vecteur −→u + −→v sont données par :

−→u + −→v =

x1 + x2

y1 + y2



Exemple :

Soient les vecteurs −→u et −→v tels que :

−→u =

−1

4

 et −→v =

2

3


Les coordonnées du vecteur −→u + −→v sont données par :

−→u + −→v =

−1 + 2

4 + 3

 =

1

7



O −→
i

−→
j−→u

−→v

−→u

−→v

−→ u
+

−→ v

1−→
i

7−→
j

Propriété 12.8 : (Coordonnées d’un produit d’un vecteur par un scalaire)

Soit un repère du plan
(

O; −→
i ; −→

j
)

, soit −→u un vecteur du plan et soit k ∈ R un scalaire tels que :

−→u =

x

y


Alors les coordonnées du vecteur k−→u sont données par :

k−→u =

kx

ky


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Exemple :

Soit le vecteur −→u tel que :

−→u =

 3

−2


Les coordonnées du vecteur 2−→u sont données par :

2−→u =

 2 × 3

2 × (−2)

 =

 6

−4



O −→
i

−→
j

−→u
2−→u

6−→
i

−4−→
j

Propriété 12.9 : (Norme d’une vecteur)

Soit un repère orthonormé du plan
(

O; −→
i ; −→

j
)

et soit −→u un vecteur du plan tel que :

−→u =

x

y


Alors la norme du vecteur −→u est donnée par :

||−→u || =
√

x2 + y2

Exemple :

Soit le vecteur −→u tel que :

−→u =

3

4


La norme du vecteur −→u est donnée par :

||−→u || =
√

32 + 42 =
√

9 + 16 =
√

25 = 5

O −→
i

−→
j

−→u

||u
|| =

5

3−→
i

4−→
j
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Chapitre 13

Fonctions de référence
Définition 13.1 : (Fonction de référence)

On appelle fonction de référence toute fonction étudiée pour sa simplicité, son exemplarité ou afin de servir de

modèle pour d’autres fonctions plus complexes.

Définition 13.2 : (Fonction carrée)
On appelle fonction carrée la fonction f définie sur R par :

f : x 7→ x2

Propriété 13.3 : (Courbe représentative de la fonction carrée)
La courbe représentative de la fonction carrée dans un repère orthonormé est une parabole (ayant approximativement

la forme d’un U dont les branches s’écarteraient indéfiniment) dont le sommet est le point O(0; 0) et qui est

symétrique par rapport à l’axe des ordonnées.

−4 −3 −2 −1 1 2 3 4

1

2

3

4

Cf

x

y

Propriété 13.4 : (Variations de la fonction carrée)
La fonction carrée est décroissante sur ] − ∞; 0] et croissante sur [0; +∞[. Son tableau de variations est :

x

f

−∞ 0 +∞

+∞+∞

00

+∞+∞

Preuve :
Le but est d’étudier toutes les variations possible de f dans son ensemble de définition Df = R =] − ∞; +∞[.

Pour cela on peut couper l’étude en deux parties : ] − ∞; 0] et [0; +∞[ (ce raisonnement s’appelle le raisonnement

par disjonction de cas).

∗ Pour x ∈] − ∞; 0] :

Soient x1 et x2 deux réels tels que x1 < x2 ⩽ 0.
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On a alors :
f(x1) − f(x2) = x2

1 − x2
2

= (x1 − x2)(x1 + x2)

Comme x1 < x2, on a :

x1 − x2 < 0

De plus, comme x1 ⩽ 0 et x2 ⩽ 0 et que x1 < x2, on a :

x1 + x2 < 0

Donc par règles du signe d’un produit :

(x1 − x2)(x1 + x2) > 0

Autrement dit :

f(x1) − f(x2) > 0

Ce qui donne finalement :

f(x1) > f(x2)

Donc d’après la définition 3.16 la fonction f est strictement décroissante sur ] − ∞; 0].

∗ Pour x ∈ [0; +∞[ :

Soient x1 et x2 deux réels tels que 0 ⩽ x1 < x2.

On a alors :
f(x1) − f(x2) = x2

1 − x2
2

= (x1 − x2)(x1 + x2)

Comme x1 < x2, on a :

x1 − x2 < 0

De plus, comme x1 ⩾ 0 et x2 ⩾ 0, et que x1 < x2, on a :

x1 + x2 > 0

Donc par règles du signe d’un produit :

(x1 − x2)(x1 + x2) < 0

Autrement dit :

f(x1) − f(x2) < 0

Ce qui donne finalement :

f(x1) < f(x2)

Donc d’après la définition 3.16 la fonction f est strictement croissante sur [0; +∞[.

Conclusion : La fonction carrée est décroissante sur ] − ∞; 0] et croissante sur [0; +∞[.

Définition 13.5 : (Fonction cube)
On appelle fonction cube la fonction f définie sur R par :

f : x 7→ x3
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Propriété 13.6 : (Courbe représentative de la fonction cube)
La courbe représentative de la fonction cube dans un repère orthonormé est une courbe passant par l’origine du

repère et qui est symétrique par rapport à l’origine.
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Propriété 13.7 : (Variations de la fonction cube)
La fonction cube est strictement croissante sur R. Son tableau de variations est :

x

f

−∞ +∞

−∞−∞

+∞+∞

Preuve :
Soient x1 ∈ R et x2 ∈ R tels que x1 < x2.

On a alors :
f(x1) − f(x2) = x3

1 − x3
2

= (x1 − x2)(x2
1 + x1x2 + x2

2)

Comme x1 < x2, on a :

x1 − x2 < 0

De plus on a :

x2
1 + x1x2 + x2

2 =
(

x1 + x2

2

)2
+ 3

4(x2 − x1)2 > 0

Donc :

x2
1 + x1x2 + x2

2 > 0

Donc par règles du signe d’un produit :

(x1 − x2)(x2
1 + x1x2 + x2

2) < 0

Autrement dit :

f(x1) − f(x2) < 0
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Ce qui donne finalement :

f(x1) < f(x2)

Donc d’après la définition 3.16 la fonction f est strictement croissante sur R.

Définition 13.8 : (Fonction inverse)
On appelle fonction inverse la fonction f définie sur R∗ par :

f : x 7→ 1
x

Propriété 13.9 : (Courbe représentative de la fonction inverse)
La courbe représentative de la fonction inverse dans un repère orthonormé est une hyperbole passant par les points

(1, 1) et (−1, −1) et qui est symétrique par rapport à l’origine.
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Propriété 13.10 : (Variations de la fonction inverse)
La fonction inverse est strictement décroissante sur ] − ∞; 0[ et strictement décroissante sur ]0; +∞[. Son tableau de

variations est :

x

f

−∞ 0 +∞

00

−∞

+∞

00

Preuve :
Appliquons le raisonnement par disjonction de cas pour étudier les variations de la fonction f dans son

ensemble de définition Df = R∗ =] − ∞; 0[∪]0; +∞[.

∗ Montrons que la fonction f est strictement décroissante sur ] − ∞; 0[.

Soient x1 ∈ R∗
− et x2 ∈ R∗

−, c’est-à-dire tels que x1 < x2 < 0.

On a alors :
f(x1) − f(x2) = 1

x1
− 1

x2

= x2 − x1

x1x2
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Comme x1 < x2, on a :

x2 − x1 > 0

De plus, comme x1 < 0 et x2 < 0, on a :

x1x2 > 0

Donc par règles du signe d’un quotient :
x2 − x1

x1x2
> 0

Autrement dit :

f(x1) − f(x2) > 0

Ce qui donne finalement :

f(x1) > f(x2)

Donc d’après la définition 3.16 la fonction f est strictement décroissante sur ] − ∞; 0[.

∗ Montrons que la fonction f est strictement décroissante sur ]0; +∞[.

Soient x1 ∈ R∗
+ et x2 ∈ R∗

+, c’est-à-dire tels que 0 < x1 < x2.

On a alors :
f(x1) − f(x2) = 1

x1
− 1

x2

= x2 − x1

x1x2

Comme x1 < x2, on a :

x2 − x1 > 0

De plus, comme x1 > 0 et x2 > 0, on a :

x1x2 > 0

Donc par règles du signe d’un quotient :
x2 − x1

x1x2
> 0

Autrement dit :

f(x1) − f(x2) > 0

Ce qui donne finalement :

f(x1) > f(x2)

Donc d’après la définition 3.16 la fonction f est strictement décroissante sur ]0; +∞[.

Définition 13.11 : (Fonction racine carrée)
On appelle fonction racine carrée la fonction f définie sur R+ par :

f : x 7→
√

x
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Propriété 13.12 : (Courbe représentative de la fonction racine carrée)
La courbe représentative de la fonction racine carrée dans un repère orthonormé est une demi-parabole située dans

le premier quadrant du repère et passant par le point O(0; 0).
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Propriété 13.13 : (Variations de la fonction racine carrée)
La fonction racine carrée est strictement croissante sur R+. Son tableau de variations est :

x

f

0 +∞

00

+∞+∞

Preuve :
Soient x1 ∈ R+ et x2 ∈ R+, c’est-à-dire tels que 0 ⩽ x1 < x2.

On a alors :

f(x1) − f(x2) = √
x1 −

√
x2

= (√x1 − √
x2)(√x1 + √

x2)
√

x1 + √
x2

car √
x1 + √

x2 > 0

=
√

x1
2 − √

x2
2

√
x1 + √

x2

= x1 − x2√
x1 + √

x2

Comme x1 < x2, on a :

x1 − x2 < 0

De plus, comme x1 ⩾ 0 et x2 > 0, on a :
√

x1 + √
x2 > 0

Donc par règles du signe d’un quotient :
x1 − x2√
x1 + √

x2
< 0

Autrement dit :

f(x1) − f(x2) < 0

Ce qui donne finalement :

f(x1) < f(x2)

Donc d’après la définition 3.16 la fonction f est strictement croissante sur R+.
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Définition 13.14 : (Fonction valeur absolue)
On appelle fonction valeur absolue la fonction f définie sur R par :

f : x 7→ |x| =

x si x ⩾ 0

−x si x < 0

Propriété 13.15 : (Courbe représentative de la fonction valeur absolue)
La courbe représentative de la fonction valeur absolue dans un repère orthonormé est formée de deux demi-droites

perpendiculaires se coupant à l’origine du repère.
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Propriété 13.16 : (Variations de la fonction valeur absolue)
La fonction valeur absolue est décroissante sur ] − ∞; 0] et croissante sur [0; +∞[. Son tableau de variations est :

x

f

−∞ 0 +∞

+∞+∞

00

+∞+∞

Preuve :
Appliquons le raisonnement par disjonction de cas pour étudier les variations de la fonction f dans son

ensemble de définition Df = R =] − ∞; +∞[.

∗ Montrons que la fonction f est décroissante sur ] − ∞; 0].

Soient x1 et x2 deux réels tels que x1 < x2 ⩽ 0.

On a alors :
f(x1) − f(x2) = |x1| − |x2|

= −x1 − (−x2)

= x2 − x1

Comme x1 < x2, on a :

x2 − x1 > 0

Donc :

f(x1) − f(x2) > 0
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Autrement dit :

f(x1) > f(x2)

Donc d’après la définition 3.16 la fonction f est strictement décroissante sur ] − ∞; 0].

∗ Montrons que la fonction f est croissante sur [0; +∞[.

Soient x1 et x2 deux réels tels que 0 ⩽ x1 < x2.

On a alors :
f(x1) − f(x2) = |x1| − |x2|

= x1 − x2

Comme x1 < x2, on a :

x1 − x2 < 0

Donc :

f(x1) − f(x2) < 0

Autrement dit :

f(x1) < f(x2)

Donc d’après la définition 3.16 la fonction f est strictement croissante sur [0; +∞[.
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