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Chapitre 1

Ensembles de nombres

Définition 1.1 : (Ensemble)
On appelle ensemble un rassemblement d’objets distincts. 11 est généralement noté par une lettre majuscule. Si

deux ensembles distincts possedent la méme lettre, on les distinguer avec des indices.

Exemple :

@ La classe de Seconde 6 forme un ensemble. On peut noter cette ensemble avec une lettre majuscule et un nombre

en indice : Sg. On peut expliciter les objets de cette ensemble :
Se = {Seyma; Déborah; Elodie; Maissame; Sarah; Fanny; Julianne; Jade; . . .}
Cette fagon de définir Sg en listant les objets entre accolade séparés par des points-virgules s’appelle la
notation en extension.
@ On peut aussi définir un ensemble en donnant ses propriétés caractéristiques. Si on définit P, I’ensemble des
pommes rouges qui existent on notera :

P. = {pomme | pomme est rouge}

Cette facon de définir P, s’appelle la notation en compréhension. La barre verticale peut se lire « tel que »,
« pomme » représente un élément générique de I'ensemble P, et « pomme est rouge » est une propriété que doit
vérifier 'objet « pomme » pour appartenir a ’ensemble P,.. Ainsi, tous les objets qui sont des « pommes » et

qui vérifient la propriété « pomme est rouge » appartiennent a I’ensemble P,.

Définition 1.2 : (Elément)
Soit E un ensemble.

On appelle élément de E tout objet appartenant a E.
Si z est un objet de E, on dira que x appartient & E et on notera x € E.

Si z n’est pas un objet de F, on dira que x n’appartient pas & F et on notera x ¢ E.

Exemple :

Elodie est un élément de Sg donc Elodie € Sg.

Définition 1.3 : (Ensemble des entiers naturels)

On appelle ensemble des entiers naturels I’ensemble des nombres entiers qui sont positifs.

On note N cet ensemble. On a donc :

N = {n | n est un nombre entier positif} = {0;1;2;3;4;5;6;7;...}

Exemple :

4eN 214641 264 125623 €N —51312¢N 0,2¢N —45¢N %GN -74+10eN 80-53€eN



Définition 1.4 : (Ensemble des entiers relatifs)

On appelle ensemble des entiers relatifs I'ensemble des nombres entiers qui sont positifs ou négatifs.

On note cet ensemble Z et on a :

Z = {n | n est un nombre entier positif ou négatif} = {...; =3; —-2; -1;0;1;2;3; ...}

Exemple :

4€Z 214641264 125623 €Z —51312€Z 0,2¢7Z —-4,5¢7Z %GZ —-74+10€Z 80-53¢€Z

Définition 1.5 : (Ensemble des décimaux)

On appelle ensemble des nombres décimaux I’ensemble des nombres qui peuvent s’écrire avec un nombre de
chiffres fini aprés la virgule. Donc il peuvent s’écrire sous la forme 157 avec a € Z et n € Z.

On note cet ensemble D et on a :

D:{i an,neN}

10m

L

Exemple :
4=3=1 €D 214641264125 623 =214 04200126638 cp 51 312=SB32 D 0,2= €D
45=TBeD L=25_NcD 7410=2eD 80-53=2LeD

0,333... = § ¢ D (voir preuve & la fin du chapitre) 7¢D 2¢D —0,00024= 73 €D

Définition 1.6 : (Exclusion du nombre 0)

En cas de besoin, il est possible d’exclure le nombre 0 d’un ensemble & 1’aide du symbole *. Ainsi :

N* ={1;2;3;4;5;6;7;...}
ZF={.;-3;,-2;-1;1;2;3; ...}

etc.

(-

Définition 1.7 : (Fraction)
On appelle fraction Iécriture d’un quotien avec un numérature entier et un dénominateur non nul entier.

Si I’écriture ¢ est une fraction, alors a € Z et b € Z*.

Exemple :

075:i1

Iy 05 : X . 5
5 = 15 L écriture n’est pas une fraction car 0,5 ¢ Z et 1,5 ¢ Z* alors que I'écriture 3% est une

Malgré le fait que s

fraction car 5 € Z et 15 € Z*.

Définition 1.8 : (Ensemble des nombres rationnels)

On appelle ensemble des nombres rationnels ’ensemble des nombres qui peuvent s’écrire sous la forme d’une

fraction. On note cet ensemble Q et on a :

Q:{%‘aez,beN*}

L

Exemple :
2=2ecQ -7T=5ecQ 3725=32cQ -0000125="2€cQ 02=1€cQ
V2 ¢ Q (voir la preuve du chapitre n°??7?) /16 = % €eQ

W=
m
(e

m¢Q




Définition 1.9 : (Infing)

On appelle infini une limite que les nombres ne pourront jamais atteindre.

On note 400 la limite dont tous les nombres sont plus petits.

On note —oo la limite dont tous les nombres sont plus grands.

Exemple :

@ —4 est plus petit que +oo et il est plus grand que —oco

@ 63 495 141 541 935 246 125 699 742 214 762 593 675 257 396 est plus petit que +oo et il est plus grand que —oco
@ 7 est plus petit que +oo et il est plus grand que —oco

@ V2 est plus petit que +00 et il est plus grand que —oo

Définition 1.10 : (Ensemble des nombres réels)

On appelle ensemble des nombres réels 'ensemble des nombres qui sont plus petit que 400 et qui sont plus
grand que —oo.

On note cet ensemble R.

Exemple :

25€¢R -TeR 3,725€¢R -0000125€R 0,2=1cR 1c€R weR V2R VI6eR

Définition 1.11 : (Ensemble des nombres irrationnels)

On appelles ensemble des nombres irrationnels ’ensemble des nombres qui sont réels et qui ne sont pas

rationnels. On le note Q" ou encore R \ Q. On a donc :

Q=R\Q={z[zecRz¢Q}

Exemple :
25¢R\Q —-7¢R\Q 3,725¢R\Q —0000125¢R\Q 0,2=:¢R\Q 1¢R\Q 7wecR\Q
V2eR\Q VI6¢R\Q

Définition 1.12 : (Diagramme d’Euler)

On appelle diagramme d’FEuler une représentation graphique utilisée pour illustrer les relations entre différents

ensembles.

Exemple :

La zone hachuré représente R \ Q



Définition 1.13 : (Quantificateur universel)

On appelle quantificateur universel un opérateur logique, noté V, utilisé pour exprimer 'idée que tous les éléments
d’un ensemble donné possedent une certaine propriété.

Le symbole V se lit « pour tout » ou « quel que soit ».

Exemple :

@ Soit O I’ensemble des oiseaux. On peut écrire la propriété suivante :
Yo € O, ovole.

On peut lire la propriété de la fagon suivante : Pour tout élément o dans I’ensemble des oiseaux, on a o qui vole.

@ La notation formelle de la phrase « pour tout réel, son carré est positif » est :
VeeR, z2>0
@ « La somme d’un nombre réel avec son opposé est toujours nul » peut étre traduit formellement :
VeeR, z+(—z)=0

Définition 1.14 : (Quantificateur existenciel)
On appelle quantificateur existentiel un opérateur logique, noté 3 , utilisé pour exprimer ’idée qu’il existe au

moins un élément dans un ensemble donné qui posséde une certaine propriété.

Le symbole 3 se lit « il existe ».

Exemple :

@ Soit A I'ensemble des animaux. La phrase « Il y a au moins un animal qui peut voler » peut se traduit formelment
par :

Jda € A, a vole.
@ « Il existe un nombre entier qui est supérieur a 10 » se traduit formellement par :
dneN, n>10
@ « On peut trouver un nombre qui, multiplié par lui-méme, donne 25 » se traduit formellement par :
dreR, xxx=25

Définition 1.15 : (Inclusion, sous-ensemble, sur-ensemble)

Soient A et B deux ensembles.
On dit que A est inclus dans B, et on note ACB, si tous les éléments de A sont aussi des éléments de B.

Dans ce cas, on dit aussi que A est un sous-ensemble de B, ou encore que B est un sur-ensemble de A.

ACB & VYa€ A, a€B @ B

Si A n’est pas inclus dans B on notera A¢ B.

L

Autrement dit :




Propriété 1.16 : (Inclusion des ensembles usuels)

®
®
®
®

L

®

®

(-

On a les inclusions suivantes :

N est inclus dans Z : N C Z
7 est un sous-ensemble de D : Z C D
Q est un sur-ensemble de D : D C Q

Qest inclusdans R: Q C R

Autrement dit :

NcZcDcQcR

Preuve :

Soit n € N.
Donc n est un entié positif. Mais d’apres la définition tout entier positif ou négatif appartient a Z donc

n € Z. On en conclue que N C Z.

Soit n € Z.

n
n=—
1

on
100
Donc d’aprés la définition [I.5] n € D. On en conclue que N C D.
Soit d € D. Donc d’apres la déﬁnition :

JaecZIneN, d= 18%
D’apres la définition il faut montrer que d peut s’écrire sous la forme d’une fraction.

Sin >0, il est claire que ’écriture ﬁ est une fraction. En effet on aura a € Z et 10" € N*

On vient de montrer que, dans tous les cas, d peut s’écrire sous la forme d’une fraction. Donc d € Q. On en

conclue alors que D C Q.

Soit g € Q. D’apres la définition on a :

Sa€ZBeEN, q=7

D’apres la définiton (1.9} le résultat d’une telle division 7 est forcement plus grand que —oo et est forcement
plus petit que 4o0.

Donc d’apres la définition g=% €R.

On vient donc de montrer que Q C R.

On conclue alors la preuve par la synthese suivante :

NCcZcDcQcR



Définition 1.17 : (Intersection)

Soient A et B deux ensembles.

On appelle intersection de A et de B, et on note ANB, ’ensemble des éléments qui sont dans A et dans B.
Si un élément x est dans A et dans B alors on notera : z € A A z € B.
Autrement dit :

ANB={z|z€ ANz € B}

(-

Définition 1.18 : (Union)
Soient A et B deux ensembles.

On appelle union ou bien réunion de A et de B, et on note AUB, ’ensemble des éléments qui sont dans A ou
dans B.
Si un élément x est dans A ou dans B alors on notera : x € A V x € B.

Autrement dit :

AUB={z|z€ AVz e B}

L

Exemple :
@ Soient A = {pommes; poires; bananes} et B = {poires; bananes; oranges}.
On a donc :

AN B = {poires; bananes}

AU B = {pommes; poires; bananes; oranges }

@ Soient M = {éleves | éleves est du club de mathématiques} et F' = {éleves | éleves est du club de francais}

On a donc :

M N F = {éléves | éleves font partie du club de mathématiques et du club de francais}

M U F = {éleves | éleves font partie du club de mathématiques ou du club de francais}

@ Soient A I’ensemble des entiers pairs et B I’ensemble des entiers multiples de 3.
On a donc :
ANB={neZ|3keZn=2kN3k' € Z,n=23k}
={neZ|3keZIK €Zn=2kx3k'}
={neZ|3k" €Zn=06k"}

={n € Z | n est un multiple de 6}



AUB={n€Z|3keZn=2kVvIK €Zn=23k}

= {n € Z | n est un multiple de 2 ou un multiple de 3}

() Soient A ={2;4;6;7;8;10} et B = {3;4;8;12}.
On a donc :
AN B =1{2;4;6;7;8;10} N {3;4; 8;12}
={4;8}
AUB =1{2;4;6;7;8;10} U {3;4;8; 12}
={2;3;4;6;7;8;10;12}
(*) Soient A ={1;2;3;4;5;6;7;8;9;10} et B = {2;5;7}.
On remarque que B C A donc :
ANB=B
AuB=A

Définition 1.19 : (Ensemble vide)

On appelle ensemble vide I’ensemble qui ne contient aucun élément. On le note (). Il peut étre défini par :

0={}

Exemple :
Soit A = {0;2;4;6} et B=1{1;3;5;7;9}. On a :
ANB=1{0;2;4;6} Nn{1;3;5;7;9}
={}
=0

Définition 1.20 : (Intervalle réel)

On appelle intervalle réel un ensemble de nombres délimité par deux nombres réels a et b constituant une borne

inférieure et une borne supérieure. Un intervalle contient tous les nombres réels compris entre ces deux bornes.
En fonction de si les bornes sont incluses ou non dans Uintervalle, on distingue les intervalles :

Intervalle ouvert : Ja;b[={zr € R | a < z < b}

Intervalle fermé : [a;b] = {x € R|a < z < b}

Intervalle semi-ouvert & gauche : Ja;b] = {zx € R | a < z < b}

gtervalle semi-ouvert a droite : [a;b[={z € R|a <z < b}



Exemple :

Inégalité Intervalle Représentation
I
2< <4 x € [2;4] 0 1 5 3 il
] | | | :
-1<z<3 z €] —1;3 —J1 0 1 2 é
T
0<z<2 z € [0;2] (% 1 2L
] ; [
2<x<4 z €]2;4] J2 3 i
[ | —
r>2 T € [25+o0] zL 3 4
] : : : : >
x> -1 x €] — 1;+00[ _J1 0 1 2 3
r<3 x €] — 00; 3] _‘2 —‘1 6 1
<2 T €] —00; 2] _‘2 —‘1 6

@ Soient les intervalles A =|1;5[ et B =]3;7].
L’intersection de A et B est :
AN B =]1;5[N]3; 7[=]3; 5]

La réunion de A et B est :

AU B =]1;5[U]3; 7[=]1; 7]
La représentation sur une droite graduée des ensembles A, B, AN B et AU B est :

| A 3 F B

,_.
[\l

w
o
ot

o

~3 i

() Soient les intervalles A = [2;5] et B = [3;6].
L’intersection de A et B est :
AN B =1[2;5]N[3;6[=[3;5]

La réunion de A et B est :

AUB =1[2;5]U[3;6]= [2;6]

(O m——

10



Définition 1.21 : (Négation)

Soit P une proposition.

On appelle négation de P la proposition qui est vraie lorsque P est fausse, et qui est fausse lorsque P est vraie. On
note la négation de P par =P et se lit « non P ».

En d’autres termes, la négation d’une proposition affirme exactement le contraire de cette proposition.

On peut résumer la situation dans une table de vérité :

2| <]
=

gec V I'abréviation de Vrai et F ’abréviation de Faux.

Exemple :
Soit la proposition P : « Il pleut ».
Alors sa négation est =P : « Il ne pleut pas ».

Si P est vraie alors =P est fausse. Si P est fausse alors =P est vraie.

Définition 1.22 : (Raisonnement par l'absurde)

On appelle raisonnement par l’absurde une méthode de démonstration qui consiste a supposer le contraire de ce
que l'on veut prouver. En développant les conséquences logiques de cette supposition, on aboutit & une contradiction,
ce qui permet de conclure que la supposition initiale était fausse et donc que la proposition que ’on voulait démontrer

est vraie.

Exemple :
Soit la proposition P : « Il n’existe pas de plus grand nombre entier. »

Pour démontrer P, on suppose la négation de P de :
- P : « Il existe un plus grand nombre entier »

On peut donc nommer ce plus grand nombre entier :
Soit V € Z le plus grand nombre entier.

Mais alors, N + 1 serait un nombre entier encore plus grand, ce qui contredit notre hypothese initiale —~P.
Donc, 'hypothese —P est fausse, et par conséquent, P est vraie.
Autrement dit : il n’y a pas de plus grand nombre entier.

Propriété 1.23 : (1 ¢ D)

% n’est pas un nombre décimal. Autrement dit :

Wl =

11



Preuve :

Soit P la proposition définie par :
1
P:«— ¢ D»
3 ¢

Pour montrer la proposition P, on va utiliser le raisonnement par ’absurde. Supposons =P :
P:« L eD»
3

1
Autrement dit : supposons que = soit un nombre décimal. Alors, il existe deux entiers relatifs a et n tels que :

1 a

3 10

En multipliant les deux membres de 1’égalité par 3 x 10™, on obtient :

%xBxlO”:ixiixlO”

107
& 1x10"=ax3
& 10" = 3a

Cette égalité implique que 10™ est un multiple de 3. Or, la somme des chiffres de 10™ est toujours égale a 1 :
14nx0=140=1

Un nombre est divisible par 3 si et seulement si la somme de ses chiffres est un multiple de 3.
Comme 1 n’est pas un multiple de 3, on aboutit a une contradiction.
Par conséquent, notre hypothese =P de départ est fausse et donc P est vraie.

1
Autrement dit : 3 ne peut pas étre un nombre décimal.

[

12



Chapitre 2

Projeté orthogonal

Définition 2.1 : (Plan euclidien)

On appelle plan euclidien une surface plane (a l’image d’une feuille de papier) infinie, et qui s'étend indéfiniment

dans toutes les directions. Tout élément d’une telle surface qui n’a pas d’épaisseur ni de longueur (autrement dit :

qui n'a pas d’étendue) est appellé point.

gnsi le regroupement de tous ces points forment un ensemble. Cet ensemble est noté & qui est le plan euclidien.

Exemple :
On peut représenter le plan euclidien &2 par le rectangle ci-contre.

c, \g- Bien stir, & n’est pas limité au rectangle mais il s’étant bien & l'infini

dans toutes les directions.

Ici on a représenté des éléments de &2 qui n’ont pas d’étendue et
A D, sont représentés par les intersections formées par les segments des
croix. Ainsi A, B, C, D, E et F sont des éléments de & et on a donc
Ae P, Be P, CeP, De P Ec PetFeA

F + Il en est de méme pour tous les autres points existants sur ce plan.

Définition 2.2 : (Droite)

Soit & un plan euclidien.

On appelle droite de & tout ensemble formée par un alignement parfait de points dans ce plan qui s’étend a 'infini
dans les deux sens, sans élément manquant dans toute sa longueur et sans épaisseur.

De maniére générale, un tel ensemble est noté 7, D, ©, A (« Delta »), d, ou 6 (« delta »). Et comme dans la
définition sa notation peut étre indexé (avoir un indice).

On peut aussi noter un tel ensemble avec les noms de deux éléments de cette droite choisie arbitrairement : si 7 est
un droite de & (autrement dit 21 C &) et si A et B sont des points de cette droite, donc des éléments de 7,

(autrement dit A € %, et B € ;) alors on peut noter ’ensemble (AB) qui est le méme ensemble que Z; et on a

ggalité (AB) = 2.

13



Exemple :

On a dq, do, A, § et 2 qui sont des droites de &2. En effet leur
représentation montre clairement un ensemble de points alignés. De

plus :

Aed; Bed; CeA De)d EFEe9 Fed
A€dy BeA Ceds Feg

On a donc :

dy = (AB) dy=(AC) A=(BC) §=(DF) (EF)=2

Définition 2.3 : (Projeté orthogonal)

On appelle projeté orthogonal d’'un point sur une droite le point d’intersection de cette droite avec la droite
perpendiculaire passant par le point initial.

Autrement dit : soient & un plan euclidien, M € &, H € & et une droite Z C &.

H est le projeté orthogonalde M sur 9 < (MH)1 2 et He P

Exemple
Ci-contre, on a graphiquement la proposition suivante qui est vraie :
() \@
(MH) L 9ANH €9 < H est le projeté orthogonal de M sur 2.
M On en conclue donc que H est le projeté orthogonal de M sur 2.
H
9

Définition 2.4 : (Distance d’un point d une droite)

On appelle distance d’un point a une droite la longueur minimale parmi toutes les longueurs des segments qui
relient ce point & un point quelconque de la droite.
Autrement dit : soient & un plan euclidien, M € £, une droite 2 C & et X € L.

La longueur X M est la distance entre M et 7 si et seulement si :

VY €9, XMLYM

L

14



Exemple :

Sachant que le point X est un point qui peut bouger sur &, le but est
\g de trouver 'emplacement du point X sur la droite Z de telle sorte
que la distance entre X et M soit la plus petite possible. On arrive a
voir intuitivement de quel point il s’agit. Mais une intuition n’est pas
une preuve. La réponse est donnée dans la propriété 2.5 qui est la

suivante.

2

Propriété 2.5 : (Longueur la plus courte d’un point ¢ une droite)

Soient &2 un plan euclidien, un point M € &, une droite ¥ C & et H € 2 le projeté orthogonal de M sur 2.

La plus courte distance entre M et n’importe quel point de la droite 2 est le point H. Autrement dit :

VX €9, HM<XM

L

Preuve :
Soient :

\g- & un plan euclidien,

2 C £ une droite quelconque de &2,

M M € & un point quelconque de &2,

X € 2 un point quelconque de ¥

et H € 9 le projeté orthogonale de M sur Z.

Par définition de H (c’est le projeté orthogonale, voire , MHX
est un triangle rectangle en H.

X Donc d’apres le théoréeme de Pythagore :
2

MH? + HX? = MX?

HX? est un carré donc HX? > 0. On en déduit donc :
MH? < MX?
Donc d’apres la propriété? ? (croissance de la fonction racine carrée) d’un future chapitre on a :
HM < MX

Autrement dit : en prenant un X quelconque sur &, la distance HM est plus petite que M X.

gclmc la distance la plus courte entre M et & est HM.

Exemple :
Si une personne est dans une prairie, et qu’elle souhaite rejoindre le bord de la route modélisable par une droite, alors

elle doit marcher le long du segment qui est perpendiculaire a la route et qui passe par elle.

15



Propriété 2.6 : (Premiére identité trigonométrique pythagoricienne)

Soient 2 C &2 une droite quelconque de &, M € & un point quelconque de &, X € 2 un point quelconque de &
et H € 2 le projeté orthogonale de M sur Z.

On a I’égalité suivante :
2

(cos (@))2 + <Sin (@)) —1
L

Preuve :

Soient :

\é & un plan euclidien,

2 C & une droite quelconque de &2,

M € £ un point quelconque de &2,
X € 2 un point quelconque de ¥
et H € Z le projeté orthogonale de M sur 2.

2

Le triangle M HX est rectangle en H (voire [2.3]). Donc d’apres les définitions élémentaires des fonctions sinus et

cosinus en termes de cotés d’un triangle rectangle, on a :

___ HX
MXH)= %~
cos( )= arx
____ HM
in(MXH) = —
sin )= 3rx

Ainsi, en élevant au carré les fonctions cosinus et sinus, on obtient :

(T’ - (X)X

MX MX?2
= \2 HM\? HM?
(sim(TXT)) _(MX> = x?

Si on additionne les carrés des fonctions cosinus et sinus, on obtient :

2 HX?  HM?

(COS(]\T)&I))2 + (sin(@)) = T
_ HX? 4 HM?
- MX?

Comme M HX est un triangle rectangle en H, d’apres le théoréme de Pythagore on a HX? + HM? = MX?, et

donc en remplacant au numérateur du quotient, on obtient :

_—_ N2 _——_ \2 HX?4+HM? MX?
(cos(MXH)) —|—<sin(MXH)> - M}2 — Ty =

_— \2 _— \2
Finalement on a montré que (cos(MXH)) + (sin(MXH)) =1.

16



Chapitre 3

Fonctions (partie géométrique)

Définition 3.1 : (Fonction)

On appelle fonction ce qui va transformer un élément d’un ensemble de départ en un unique élément d’un ensemble

d’arrivé.
Autrement dit : soient F et F' deux ensembles.
On appelle fonction de E dans F une application qui a tout élément z € E associe un unique élément y € F'.

On note alors f : E — F la fonction nommé f qui & x € E associe y € F et on écrit y = f(x).

Départ dans E Fonction Arrivée dans F

Entrée Sortie

L

Exemple :
Soit f : R — R la fonction qui a tout réel x associe le réel f(z) = 2z + 3.

On a par exemple :

f(0)=2x 043 =3 donc a 0 on associe 3

f(1)=2x143 =5 donc a 1 on associe 5

f(2) =2x243="7donc & 2 on associe 7
f(=1)=2x(=1)+3=1donc a — 1 on associe 1

Définition 3.2 : (Image et antécédent)
Soient f : E — F une fonction, z € FE et y € F tels que y = f(x).

y est appellée l"image de = par f. En effet, x n’a qu’une seule image.

x est appellé un antécédent de y par f. En effet, y peut avoir plusieurs antécédents.

Exemple :

En reprenant I’exemple précédent : f : R — R est la fonction qui & tout réel x associe le réel f(z) = 2z + 3.

f(0)=3 donc 3 est I'image de 0 par f et 0 est un antécédent de 3 par f.
f)y=5 donc 5 est I'image de 1 par f et 1 est un antécédent de 5 par f.
f@)y=r7 donc 7 est 'image de 2 par f et 2 est un antécédent de 7 par f.
f(=1)=1 donc 1 est 'image de — 1 par f et —1 est un antécédent de 1 par f.

Définition 3.3 : (Courbe représentative d’une fonction)
Soient f: E — F une fonction, « € E et y € F tels que y = f(x).

La courbe représentative de la fonction [ est ’ensemble des points du plan dont les coordonnées sont les
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couples (z ; f(x)) olt  est un élément de ’ensemble de départ E.

On note souvent la courbe représentative de la fonction f par €;.
Exemple :

@ En reprenant exemple précédent : f: R — R est la fonction qui & tout réel x associe le réel f(x) = 2z + 3.

La courbe représentative de la fonction f est ’ensemble des points du plan
dont les coordonnées sont les couples (z ;2z + 3) ot z € R.

Par exemple, comme f(1) = 5 alors le point de coordonnées (1 ; 5) appartient
a €. On notera alors (1 ;5) € 6.

Comme plusieurs points on déja été calculés dans I'exemple précédent, on
peut les placer sur un repere.

On peut donc tracer la courbe représentative de la fonction f.

@ Sans connaitre I'expression d’une fonction, on peut déterminer si une courbe d’un graphique peut étre la courbe
représentative d’une fonction ou non.

Si on prend par exemple x = 1, on voit que la droite verticale passant par

x = 1 coupe la courbe en deux points.

Donc z = 1 a deux images différentes.

Or une fonction ne peut pas avoir un élément de I’ensemble de départ qui

a plusieurs images.

Donc cette courbe ne peut pas étre la courbe représentative d’une fonction.

Ici, pour chaque valeur de x, il n’y a qu’'une seule image y sur la courbe.

Ainsi, cette courbe peut étre la courbe représentative d’une fonction.
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Ici, pour chaque valeur de x strictement positive, il y a deux images y sur
la courbe.

Ainsi, cette courbe ne peut pas étre la courbe représentative d’une fonction.

Définition 3.4 : (Ensemble de définition d’une fonction)

On le note généralement 7 :

L

Exemple :

@ Soit la courbe suivante :

Soient f une fonction et F un ensemble.

On appelle ensemble de définition de [ I’ensemble des éléments de E qui ont une image par f qui existe.

Autrement dit, ’ensemble de définition de [ est I'ensemble des x dans E pour lesquels f(x) existe.

P ={x € E| f(x) existe}

On peut voir que pour chaque valeur de x strictement comprise entre —1
et 3, il y a une unique image y sur la courbe.

Par contre, pour x < —1 ou « > 3, il n’y a pas d’image y sur la courbe.
De plus, on remarque un point plein en (—1; —1), donc f(—1) = —1 existe.
Et on remarque un arc de cercle en (3 ; 3), ce qui annonce que 3 n’a pas
d’image par f et donc que f(3) n’existe pas.

Donc lensemble de définition de cette fonction est l'intervalle [—1 ; 3.

Autrement dit : 5 = [-1; 3].

Ici, le fait qu’il n’y ait pas de point plein ou d’arc de cercle sur la partie
gauche de la courbe nous laisse supposer que la courbe se prolonge indéfi-
niment vers la gauche sans s’arréter en gardant la méme allure.

Ainsi, pour tout z < 3, il y a une unique image ¥ sur la courbe.

Pour z > 3, il n’y a pas d’image sur la courbe montrer par ’arc de cercle
en (3 ; 3) et I'absence de trace de la courbe & droite de z = 3.

Donc 9, =] — o0 ; 3|.
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@ Soit la courbe suivante :

Ici, la courbe est tracée partout sauf en x = —1 ou il y a une discontinuité.

"""""" L’ensemble de définition est donc :
In=1-00;-1[U] =1 ;400 =R\ {~1}.

Propriété 3.5 : (Lecture graphique)

Lorsqu’une fonction f est définie par sa courbe représentative 4 dans un repere orthonormé, on peut lire graphi-

quement les associations entre les antécédents et les images de la fagon suivante :

@ Pour lire I'image y d’un antécédent x :

On trace la droite verticale passant par x sur 'axe des abscisses jusqu’a &’ formant un point d’intersection.
On trace ensuite la droite horizontale passant par ce point d’intersection jusqu’a I’axe des ordonnées.
On lit Pordonnée de ce point d’intersection avec 'axe des ordonnées. Cette ordonnée est I'image y = f(z).
Si la droite verticale ne coupe pas la courbe, alors x n’a pas d’image.

Si la droite verticale coupe la courbe en un seul point, alors 'antécédent = a une image.

Si la droite verticale coupe la courbe en plusieurs points, alors 'antécédent x a plusieurs images (ce qui

est impossible pour une fonction).

@ Pour lire un antécédent = d’une image y :

On trace la droite horizontale passant par f(z) jusqu’a % formant un ou plusieurs points d’intersection.
On trace ensuite la ou les droites verticales passant par ces points d’intersection jusqu’a ’axe des abscisses.
On lit les abscisses de ces points d’intersection avec 1'axe des abscisses. Ces abscisses sont les antécédents
de f(x).

Si la droite horizontale ne coupe pas la courbe, alors I'image f(z) n’a pas d’antécédent.

Si la droite horizontale coupe la courbe en plusieurs points, alors 'image f(z) a plusieurs antécédents.

Si la droite horizontale coupe la courbe en un seul point, alors I'image f(x) a un unique antécédent.
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Exemple :

Soit la courbe suivante :

@ Pour lire I'image de 1 :

e On trace la droite verticale (en verte) passant par 1 sur l'axe des

abscisses jusqu’a €5 formant un point d’intersection.

e On trace ensuite la droite horizontale passant par ce point d’intersec-

tion jusqu’a I’axe des ordonnées.

e On lit ordonnée de ce point d’intersection avec ’axe des ordonnées.

Cette ordonnée est I'image y = f(1) = —2.

@ Péur life les antééédeﬁts dé 1:
o On trace la droite horizontale (en rouge) passant par 1 sur 'axe des ordonnées jusqu’a €y formant trois
points d’intersection.
¢ On trace ensuite les droites verticales passant par ces points d’intersection jusqu’a l’axe des abscisses.

e On lit les abscisses de ces points d’intersection avec ’axe des abscisses. Ces abscisses sont les antécédents

de y =1, qui sont —2, —1 et 2.

Propriété 3.6 : (Appartenance d’un point a une courbe représentative)

Soient A un point du plan de coordonnées (x4 ; ya), f une fonction et € la courbe représentative de f.
On a :

A(xa; ya) €€ <= ya = f(xa)

Autrement dit, un point A appartient a la courbe représentative ¢ d’une fonction f si et seulement si 'ordonnée

g A est 'image par f de I'abscisse de A.

Exemple :

Soit la courbe suivante :

@ Pour le point A(—1; 0) :
o L’abscisse de A est x4 = —1 et 'ordonnée de A est y4 = 0.
e On lit graphiquement I'image de —1 par f a l’aide de la courbe :
f=1) =1
o On compare les résultats : comme y4 # f(za4), alors A ¢ €.
@ Pour le point B(0 ; —1) :

e L’abscisse de B est g = 0 et 'ordonnée de B est yg = —1.

e On lit graphiquement l'image de 0 par f a l'aide de la courbe :
f(0)=-1

o On compare les résultats : comme ygp = f(xp), alors B € 6.
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@ On cherche a savoir si —1 est 'image de 1 par f :
e On place le point C(1 ; —1) sur le graphique.
» On remarque que C' € %¥.
e Donc —1 est bien 'image de 1 par f.

@ On cherche a savoir si —1 est 'image de 2 par f :
o On place le point D(2; —1) sur le graphique.
« On remarque que D ¢ €.

e Donc —1 n’est pas 'image de 2 par f.

Définition 3.7 : (Equation)

On appelle équation une égalité avec une ou plusieurs inconnues généralement notées par des lettres.

Exemple :

2z 4+ 3 = 7 est une équation a une inconnue zx.

22 — bz 4+ 6 = 0 est une équation & une inconnue .

2z + 3y = 7 est une équation a deux inconnues x et y.

22 4+ y? = 1 est une équation & deux inconnues z et y.

2 4+ 3 = 5 est une égalité, mais ce n’est pas une équation car il n’y a pas d’inconnue.
7 — 4 = 3 est une égalité sans inconnue, donc ce n’est pas une équation.

2z 4 1 est une expression algébrique sans égalité, donc ce n’est pas une équation.

ONONONONORORORO)

22 — 5 est une expression sans égalité, donc ce n’est pas une équation.

Définition 3.8 : (Solution d’une équation)

Soit une équation & une ou plusieurs inconnues.
On appelle solution de l’équation toute valeur qui, en remplagant les inconnues dans 1’équation, transforme
I’égalité en une égalité vraie.

On appelle ensemble des solutions de l’équation I'ensemble de toutes les solutions de ’équation. Cet ensemble

ﬁlt généralement noté .7 .

Exemple :

@ Pour I'équation 22 +3 =7 :
e En remplacant x par 2, on obtient 2 X 2 4+ 3 = 7 qui est une égalité vraie. Donc 2 est une solution de
I’équation.
o En remplagant x par 3 (dans I'équation ci-dessus), on obtient 2 X 34+ 3 = 7 qui est une égalité fausse. Donc
3 n’est pas une solution de I’équation.
o L’ensemble des solutions de I’équation est .7 = {2}.
@ Pour I’équation 22> — 52 +6 =0 :
o En remplacant x par 2, on obtient 22 — 5 x 2+ 6 = 0 qui est une égalité vraie. Donc 2 est une solution de
I’équation.
o En remplacant x par 3, on obtient 32 — 5 x 3 +6 = 0 qui est une égalité vraie. Donc 3 est une solution de

I’équation.
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o En remplacant = par 4, on obtient 42 — 5 x 4 4+ 6 = 0 qui est une égalité fausse. Donc 4 n’est pas une

solution de I’équation.

o L’ensemble des solutions de I’équation est . = {2 ; 3}.

Définition 3.9 : (Résoudre une équation)

Résoudre une équation, c’est déterminer son ensemble de solutions.

Propriété 3.10 : (Résolution graphique d’une équation)

Soient f une fonction définie sur R et ¢ la courbe représentative de f dans un repeére orthonormé.

1. Soit yo un réel.
Pour résoudre équation f(x) = yo (rappel : ici linconnu est ), on peut procéder graphiquement de la méme
fagon que pour lire les antécédents de I'image yo (voir la propriété page .

2. Soient g une autre fonction définie sur R et & la courbe représentative de g dans le méme repére orthonormé.

Résoudre I'équation f(x) = g(z), revient & trouver les antécédents de f(x) et de g(z) qui ont la méme image,

c’est-a-dire les abscisses des points d’intersection des courbes €y et €.

L

Exemple :

Soit € telle que représentée ci-dessous :

@ Pour résoudre I'équation f(z) =2:
o On trace la droite horizontale (en rouge) passant par 2 sur 'axe des
ordonnées jusqu’a ¢y formant un seul point d’intersection.

o On trace ensuite la droite verticale (en rouge) passant par ce point

d’intersection jusqu’a l’axe des abscisses.

e On lit Pabscisse de ce point d’intersection avec I’axe des abscisses. Par

lecture graphique, la solution est environ z ~ 2,6 a 0,1 pres.

o L’ensemble des solutions de I’équation est donc . ~ {2,6}.
@ Pour résoudre 1’équation f(xz) =1 :
o On trace la droite horizontale (en vert) passant par 1 sur l'axe des ordonnées jusqu’'a %y formant trois
points d’intersection.

e On trace ensuite les droites verticales (en vert) passant par ces points d’intersection jusqu’a l’axe des

abscisses.
e On lit les abscisses de ces points d’intersection avec ’axe des abscisses. Ces abscisses sont les solutions de
Péquation f(z) =1, c’est-a-dire x = =2, z = —1 ou z = 2.

o L’ensemble des solutions de I’équation est donc .¥ = {—-2; —1; 2}.
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@ Pour résoudre graphiquement ’équation f(x) = g(x) :
» On trace les courbes représentatives ¢y et 6, sur le méme graphique.
e Les solutions sont les abscisses des points d’intersection des deux
courbes. Par lecture graphique, les solutions sont x = —2, z = 0 et

z=2.Donc ¥ ={-2; 0; 2}.

,,,,,,,,, -3+

Définition 3.11 : (Inéquation)
On appelle inéquation une inégalité avec une ou plusieurs inconnues généralement notées par des lettres.

Exemple :

2z 4+ 3 < 7 est une inéquation a une inconnue x.

2% — 52 4+ 6 > 0 est une inéquation & une inconnue z.

2z + 3y < 7 est une inéquation a deux inconnues x et y.

22 4+ y? > 1 est une inéquation & deux inconnues z et y.

2 4+ 3 =5 est une égalité sans une inconnue, donc ce n’est pas une inéquation.

Trx — 4 = 3 est une égalité avec une inconnue, donc ce n’est pas une inéquation.

OJORONORORO,

@ 2% — 5 est une expression sans inégalité, donc ce n’est pas une inéquation.

Définition 3.12 : (Solution d’une inéquation)

Soit une inéquation a une ou plusieurs inconnues.
On appelle solution de l’inéquation toute valeur qui, en remplacant les inconnues dans 'inéquation, transforme
I'inégalité en une inégalité vraie.

On appelle ensemble des solutions de l’inéquation I’ensemble de toutes les solutions de I'inéquation. Cet

gsemble est généralement noté .7

Définition 3.13 : (Résoudre une inéquation)

Résoudre une inéquation, c’est déterminer son ensemble de solutions.

Propriété 3.14 : (Résolution graphique d’une inéquation)

Soient f une fonction définie sur R et ¢ la courbe représentative de f dans un repeére orthonormé.

1. Soit yo € R.
Résoudre l'inéquation f(z) < yo (ou f(z) < yo, ou f(x) > yo, ou f(z) = yo), revient a trouver les antécédents
de f(x) dont 'image est inférieure (ou inférieure ou égale, ou supérieure, ou supérieure ou égale) a yo.
On peut procéder graphiquement de la méme fagon que pour lire les antécédents de I'image yo (voir la propriété
page, puis en repérant les parties de la courbe qui sont en-dessous (ou au-dessus) de la droite horizontale
d’équation y = yg on associe les antécédants a ces parties qui sont les solutions de I'inéquation.

2. Soient g une autre fonction définie sur R et % la courbe représentative de g dans le méme repére orthonormé.
Résoudre l'inéquation f(x) < g(z) (ou f(z) < g(x), ou f(z) > g(z), ou f(x) > g(z)), revient a trouver les

antécédents de f(x) et de g(x) dont 'image par f est inférieure (ou inférieure ou égale, ou supérieure, ou
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supérieure ou égale) a I'image par g.
On peut procéder graphiquement de la méme fagon que pour lire les antécédents de I'image commune aux
deux fonctions (voir la propriété page , puis en repérant les parties de la courbe 6y qui sont en-dessous

(ou au-dessus) de la courbe 6, on associe les antécédants & ces parties qui sont les solutions de 'inéquation.

L

Exemple :

Soit & telle que représentée ci-dessous :

@ Pour résoudre I'inéquation f(x) <1 :

e On trace la droite horizontale (en rouge) passant par 1 sur 'axe des

ordonnées jusqu’a ¢y formant trois points d’intersection.

o On trace ensuite les droites verticales (en rouge) passant par les points

d’intersection jusqu’a l’axe des abscisses.
e On repere les parties de la courbe qui sont en-dessous de cette droite.

e On lit les abscisses des points des parties de la courbe correspondantes.

Ces abscisses sont les solutions de I'inéquation f(x) < 1, ¢’est-a-dire
r< —2,0u—-1<z<2

e L’ensemble des solutions de I'inéquation est donc :
S =]—00;-2[U]—-1;2].

@ Pour résoudre l'inéquation f(z) > —1:

o On trace la droite horizontale (en vert) passant par —1 sur l'axe des ordonnées jusqu’a %y formant trois
points d’intersection.

e On trace ensuite les droites verticales (en vert) passant par les points d’intersection jusqu’a l'axe des
abscisses.

e On repere les parties de la courbe qui sont au-dessus de cette droite.

e On lit les abscisses des points des parties de la courbe correspondantes. Ces abscisses sont les solutions de
Pinéquation f(z) > —1, c’est-a-dire —2,6 <z < 0ouz > 1,6.

o L’ensemble des solutions de l'inéquation est donc . = [-2,6 ; 0] U [2; 4oo[ =R\]1,6 ; +o0f.

@ Soient € et €, telles que représentées ci-contre.
Pour résoudre graphiquement 'inéquation f(z) < g(x) :
e On repere les points d’intersection des deux courbes ¢ et €,. Par

lecture graphique, les abscisses de ces points d’intersection sont z = —2,

r=0etz=2.
o On repere les parties de € qui sont stritctement en-dessous de €.

e On lit les abscisses des points de ces parties de la courbe. Ces abscisses

sont les solutions de l'inéquation f(z) < g(z), c’est-a-dire < —2 ou
0<z <2

e L’ensemble des solutions de I'inéquation est donc :

S =]—-00;-2[U]0;2[.
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Définition 3.15 : (Tableau de signes)

Soit f une fonction définie sur un intervalle I C R.

On appelle tableau de signes de f un tableau qui permet de visualiser le signe de f(x) sur I.

Exemple :
Soit € telle que représentée ci-dessous :

On cherche a dresser le tableau de signes de f sur R.

» On repere les points oti la courbe € coupe 'axe des abscisses. Par lecture

graphique, ces points ont pour abscisses x = —2 et x = 2.

o On repeére les parties de la courbe o f est positive qui sont au-dessus (en

vert) de l'axe des abscisses, et ol f est négative qui est en-dessous (en

rouge) de I'axe des abscisses.

e On en déduit le tableau de signes suivant :

On peut ainsi lire que f(z) > 0 pour x < —2 ou > 2, que f(z) < 0 pour —2 < z < 2, et que f(z) =0 pour z = —2
ouzx =2.

Autrement dit :
o l'ensemble des solutions de I'inéquation f(x) > 0est =] — 00 ;—2[ U ]2 ;4+o0],
o fl2)<0 = ¥=]-2;2[,

o fl)=0 = ={-2; 2}.

Définition 3.16 : (Variation d’une fonction)

Soit f une fonction définie sur un intervalle I C R.

On appelle variation de [ la fagcon dont f(x) évolue lorsque x parcourt I dans le sens croissant.

o Si f(x) augmente lorsque = augmente, on dit que [ est croissante.

Autrement dit, pour tous réels a et b de I, si a < b alors f(a) < f(b).

e Si f(z) diminue lorsque = augmente, on dit que [ est décroissante.

Autrement dit, pour tous réels a et b de I, si a < b alors f(a) > f(b).

e Si f(z) ne change pas lorsque x augmente, on dit que f est constante.

Autrement dit, pour tous réels a et b de I, si a < b alors f(a) = f(b).

o On dit que f est strictement croissante (respectivement f est strictement décroissante) si les inégalités

I:, précédentes sont strictes.
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Soit € telle que représentée ci-contre.

On remarque que f est :
 décroissante pour x €] — oo ; —1],

e croissante pour z € [—1; 1],

3 « décroissante pour z € [1 ; 4o0].

Définition 3.17 : (Extremum local)
Soit f une fonction définie sur un intervalle I C R.

On appelle extremum local tout point de la courbe représentative de f ou il y a un changement de variation de f.

e Si f passe de croissante a décroissante, on dit que f admet un mazimum local en ce point.

e Si f passe de décroissante a croissante, on dit que f admet un minimum local en ce point.

L

Exemple :
Soit € telle que représentée ci-contre.

On remarque que :

e (=1; —1) est un extremum local, en particulier un minimum local car f

passe de décroissante a croissante en ce point,

e (1; 2) est un extremum local, en particulier un maximum local car f passe

de croissante a décroissante en ce point.

Définition 3.18 : (Tableau de variations)

Soit f une fonction définie sur un intervalle I C R.

On appelle tableau de variations de f un tableau qui permet de visualiser les variations de f sur I.

Exemple :

En utilisant la fonction f de I'exemple précédent, on peut dresser le tableau de variations suivant :

On peut ainsi lire que f est :
x —00 -1 1 400
o décroissante sur | — oo ; —1],
oo 2 e croissante sur [—1; 1],
o décroissante sur [1 ; +o0],
-1 —00

e avec un minimum local égal a

—lenz=-1

¢ et un maximum local égal a 2

enz=1.
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Chapitre 4

Proportions et pourcentages

Définition 4.1 : (Population)
On appelle population un ensemble d’individus ou d’objets. Comme pour les ensembles (voir la définition page

, une population est souvent notée par une lettre majuscule (par exemple E, F', P, etc.) et ses éléments sont les

individus ou les objets de la population.

Exemple :

L’ensemble des éléves d’une classe est une population. On peut noter cette population E si on le souhaite.

®

L’ensemble des habitants d’une ville est une population. On peut noter H; les habitants de la ville n°1, Hy les

habitants de la ville n°2, etc.
@ L’ensemble des voitures d’'un parking est une population.

L’ensemble des livres d’une bibliothéque est une population.

Définition 4.2 : (Sous-population)

Soit E une population.
On appelle sous-population de E une population F' qui est un sous-ensemble de E, c’est-a-dire que tous les

éléments de F' sont aussi des éléments de E. On a donc F C E.

Exemple :

@ Dans une classe E de 30 éleves, I’ensemble F' des filles de la classe est une sous-population de E.

@ Dans une ville H de 100 000 habitants, ’ensemble A des habitants agés de plus de 65 ans est une sous-population
de H.

@ Dans un parking P de 200 voitures, I’ensemble D des voitures diesel est une sous-population de P.

@ Dans une bibliotheque B de 10 000 livres, I’ensemble R des romans est une sous-population de B.

Définition 4.3 : (Effectif d’une population)
Soit F une population.

On appelle effectif d’une population le nombre d’éléments de cette population. L’effectif de E est généralement

noté ng.

Exemple :

En utilisant les populations de I’exemple précédent :
@ Dans une classe E de 30 éleves, 'effectif de la population E est ng = 30. Si la sous-population F' des filles de la

classe contient 18 filles, alors 'effectif de la sous-population F est np = 18.

@ Dans une ville H de 100 000 habitants, I'effectif de la population H est ng = 100 000. Si la sous-population
A des habitants agés de plus de 65 ans contient 20 000 habitants, alors I'effectif de la sous-population A est
na = 20 000.

@ Dans un parking P de 200 voitures, 'effectif de la population P est np = 200. Si la sous-population D des

voitures diesel contient 80 voitures, alors 'effectif de la sous-population D est np = 80.
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@ Dans une bibliotheque B de 10 000 livres, I'effectif de la population B est ng = 10 000. Si la sous-population R

des romans contient 6 000 livres, alors 'effectif de la sous-population R est ng = 6 000.

Définition 4.4 : (Proportion)
Soient deux populations E et F' telles que F' C E.

On appelle proportion de F dans E le nombre p, généralement exprimé en pourcentage, qui indique la part de F

par rapport a E. La proportion p de F dans E est donnée par la formule :

ng

ng

g np est Peffectif de la population F' et ng est effectif de la population F.

Exemple :

En utilisant les populations de ’exemple précédent :

@ Dans une classe E de 30 éleves, l'effectif de la population E est ng = 30. Si la sous-population F' des filles de la
classe contient 18 filles, alors 'effectif de la sous-population F' est ng = 18. La proportion de filles dans la classe
est donc :

ng 18

—NE_ 2% 6= 60%.
P= s T30 %

@ Dans une ville H de 100 000 habitants, I'effectif de la population H est ng = 100 000. Si la sous-population
A des habitants agés de plus de 65 ans contient 20 000 habitants, alors I'effectif de la sous-population A est
na = 20 000. La proportion d’habitants dgés de plus de 65 ans dans la ville est donc :

_na _ 20000
" ny 100 000

=0,2 =20%.

@ Dans un parking P de 200 voitures, l'effectif de la population P est np = 200. Si la sous-population D des
voitures diesel contient 80 voitures, alors 'effectif de la sous-population D est np = 80. La proportion de voitures

diesel dans le parking est donc :

np 80

— = —=0,4=40%.
np 200 !

@ Dans une bibliotheque B de 10 000 livres, ’effectif de la population B est ng = 10 000. Si la sous-population
R des romans contient 6 000 livres, alors l'effectif de la sous-population R est ng = 6 000. La proportion de
romans dans la bibliotheque est donc :

_ng 6000
P= s T 10000

0,6 = 60%.

Propriété 4.5 : (Proportion entre 0 et 1)

Soient E une population, F' une sous-population de E et p la proportion de F' dans E. On a toujours :

0<p<l1

Soient E une population, F' une sous-population de E et p la proportion de F' dans E. Par définition [4-4] de la
proportion, on a :
nr

p:
ng

ou np est leffectif de la population F' et ng est Ueffectif de la population E.

Comme F C F, on a forcément ng < ng. De plus, les effectifs sont des nombres entiers naturels, donc ng > 0 et

29



ng > 0. On en déduit que :

0<nr <ng

En divisant cette inégalité par le nombre strictement positif ng, on obtient :

0 ng ng
ng ng ng

c’est-a-dire :

Propriété 4.6 : (Pourcentage de pourcentage)

Soient E, A et B trois populations telles que B C A C E et p; la proportion de A dans E et ps la proportion de B

dans A. La proportion p de B dans E est donnée par la formule :
E

’

P =Dp1 X P2

L

Soient E, A et B trois populations telles que B C A C E, p; la proportion de A dans E et ps la proportion de B

dans A. Par définition de la proportion, on a :

na np
pr=— et py=—
ng na

ou na, np et ng sont respectivement les effectifs des populations A, B et E.

En multipliant ces deux égalités, on obtient :

na np np
PrXpr=— X —=—
ne na ng

Or, par définition de la proportion, on a aussi :

np
pP=—
ng
ou p est la proportion de B dans E. On en déduit que :
pP=Dp1 XPp2

Exemple :

Dans une ville H de 100 000 habitants, 'effectif de la population H est ng = 100 000. Si la sous-population A des
habitants agés de plus de 65 ans contient 20 000 habitants, alors 'effectif de la sous-population A est ng = 20 000. La
proportion d’habitants agés de plus de 65 ans dans la ville est donc :

na 20 000

— = ——=0,2=20%.
ng 100 000 ’ %

p1 =

Parmi ces 20 000 habitants, la sous-population B des habitants 4gés de plus de 75 ans contient 5 000 habitants, donc
leffectif de la sous-population B est ng = 5 000. La proportion d’habitants a4gés de plus de 75 ans parmi les habitants

agés de plus de 65 ans est donc :

ng 5000
_ B _ — 0,25 = 25%.
P2 = T 20000 i
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La proportion p d’habitants dgés de plus de 75 ans dans la ville est donc :
p=p1 Xp2=0,2%x0,25=0,05=5%.

On peut aussi vérifier ce résultat en calculant directement la proportion de B dans H :

np 5 000
— = = 0,05 = 5%.
ng 100 000 ’ %
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Chapitre 5

Multiples et diviseurs

Définition 5.1 : (Multiple, divise, diviseur, divisibilité)
Soient a € Z et b € Z*.

On dit que a est un multiple de b si et seulement s’il existe un nombre entier relatif k tel que :

a=bxk

gms ce cas, on dit aussi que b est un diviseur de a ou que b divise a. On dit aussi que a est divisible par b.

Exemple :

@ 15 est un multiple de 3 car 15 = 3 x 5. On dit aussi que 3 est un diviseur de 15 ou que 3 divise 15. On dit aussi
que 15 est divisible par 3.

@ —24 est un multiple de 4 car —24 = 4 x (—6). On dit aussi que 4 est un diviseur de —24 ou que 4 divise —24.
On dit aussi que —24 est divisible par 4.

@ 0 est un multiple de tous les entiers relatifs non nuls car pour tout entier relatif non nul b, on a 0 = b x 0. On
dit aussi que tout entier relatif non nul est un diviseur de 0 ou que tout entier relatif non nul divise 0. On dit
aussi que 0 est divisible par tous les entiers relatifs non nuls.

@ Aucun entier relatif non nul n’est un multiple de 0, car il n’existe pas d’entier relatif & tel que a = 0 x k pour un
entier relatif non nul a.

Propriété 5.2 : (Somme de multiples)
Soient a € Z, b € Z et c € Z*.

Si a et b sont des multiples de ¢, alors a + b est un multiple de c.

Exemple :

Soient a = 15, b = —24 et ¢ = 3.

Comme 15 =3 x 5, on a 15 est un multiple de 3.

Comme —24 = 3 x (—8), on a —24 est un multiple de 3.

Donc, 15 + (—24) = —9 est un multiple de 3 car —9 = 3 x (—3).
Corolaire 5.3 : (Somme de multiple de 3)

Soient a € Z et b € Z.

ga et b sont des multiples de 3, alors a + b est un multiple de 3.

Preuve :
Soient a € Z et b € Z et supposons que a et b sont des multiples de 3.

Par définition des multiples, il existe des entiers relatifs k1 et ko tels que :
a=3 X kl
b=3x 1{32

En additionnant ces deux égalités, on obtient :

a—|—b:3><k1+3><k:2:3><(k1—|—k2)
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Or, k1 + ko est un entier relatif car la somme de deux entiers relatifs est un entier relatif. Donc, par définition [5.1

gals multiples, a + b est un multiple de 3.

Propriété 5.4 : (Critéres de divisibilité)

Soient a € Z.
e a est un multiple de 2 le chiffre des unités de a est 0, 2, 4, 6 ou 8.
e a est un multiple de 3 la somme des chiffres de a est un multiple de 3.
e a est un multiple de 4 le nombre formé par les deux derniers chiffres de a est un multiple de 4

(généralement pas utile & connaitre).

e a est un multiple de 5 le chiffre des unités de a est 0 ou 5.
e a est un multiple de 6 a est un multiple de 2 et de 3 (généralement pas utile d connaitre).
e a est un multiple de 7 le double du chiffre des unités de a soustrait du nombre formé par les autres

chiffres de a est un multiple de 7.

e a est un multiple de 8 le nombre formé par les trois derniers chiffres de a est un multiple de 8 (généralement

pas utile a connaitre).

e a est un multiple de 9 la somme des chiffres de a est un multiple de 9.
I:, e a est un multiple de 10 le chiffre des unités de a est 0.
Exemple :

@ a = 2 346 est un multiple de 2 car le chiffre des unités est 6.

@ b = 2 346 est un multiple de 3 car la somme des chiffres est 2+ 3 + 4 + 6 = 15 et 15 est un multiple de 3.

@ ¢ = 2 344 est un multiple de 4 car le nombre formé par les deux derniers chiffres est 44 et 44 est un multiple de 4.
@ d = 2 345 est un multiple de 5 car le chiffre des unités est 5.

@ e = 2 346 est un multiple de 6 car c¢’est un multiple de 2 et de 3.

@ f =2 352 est un multiple de 7 car le double du chiffre des unités soustrait du nombre formé par les autres

chiffres est 235 — 2 x 2 = 231 et 231 est un multiple de 7.

@ g = 2 348 est un multiple de 8 car le nombre formé par les trois derniers chiffres est 348 et 348 est un multiple
de 8.

@ h = 2 343 est un multiple de 9 car la somme des chiffres est 2+ 34+ 4 + 3 = 12 et 12 est un multiple de 9.

@ 1 = 2 340 est un multiple de 10 car le chiffre des unités est 0.

Définition 5.5 : (Nombre pair, impair)

On appelle nombre pair un entier relatif qui est un multiple de 2.

Autrement dit : soit a € Z,
a est un nombre pair <= Jk € Z tel que a =2 X k.

On appelle nombre impair un entier relatif qui n’est pas un multiple de 2.

Autrement dit : soit a € Z,

a est un nombre impair <= Pk € Z tel que a = 2 x k

< dkeZtelquea=2xk+1
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Exemple :

@ 4 est un nombre pair car 4 = 2 x 2.

@ —12 est un nombre pair car —12 = 2 x (—6).

@ 0 est un nombre pair car 0 = 2 x 0.

@ 5 est un nombre impair car 5 =2 x 2 4 1.

@ —7 est un nombre impair car —7 =2 x (—4) + 1.

@ 1 est un nombre impair car 1 =2 x 0+ 1.

Propriété 5.6 : (Carré d’un nombre pair, impair)

Le carré d’'un nombre pair est un nombre pair.

Le carré d’'un nombre impair est un nombre impair.

Preuve :
Soit a € Z.

@ Supposons que a est un nombre pair. Par définition des nombres pairs :
JdkeZ,a=2xk
En élevant cette égalité au carré, on obtient :
a®>=2xk)?=4xk*=2x( )

Or, est un entier relatif car le produit de deux entiers relatifs est un entier relatif. Donc, par définition

des nombres pairs, a® est un nombre pair.

@ Supposons maintenant que a est un nombre impair. Par définition des nombres impairs :
JdkeZ,a=2xk+1
En élevant cette égalité au carré, on obtient :
> =2xk+1)?=4xE+4xk+1=2x 2xE*+2xk)+1

Or, 2 x k2 4+ 2 x k est un entier relatif car la somme de deux entiers relatifs est un entier relatif. Donc, par

définition des nombres impairs, a? est un nombre impair.

Exemple :

Le carré de 4 est 16 et 16 est un nombre pair.

Le carré de —12 est 144 et 144 est un nombre pair.
Le carré de 0 est 0 et 0 est un nombre pair.

Le carré de 5 est 25 et 25 est un nombre impair.

Le carré de —7 est 49 et 49 est un nombre impair.

ONONONORORO)

Le carré de 1 est 1 et 1 est un nombre impair.
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Chapitre 6

Vecteurs du plan

Définition 6.1 : (Vecteur)
Soient A et B deux points distincts du plan.

On appelle vecteur 1@ la translation qui transforme le point A en B.
Le point A est appelé origine du vecteur zﬁ et le point B est appelé extrémité du vecteur ﬁ
Le vecteur E est donc défini par :

1. sa direction : la droite (AB),
2. son sens : de A vers B,

3. sa norme : la distance AB.

gnsi le vecteur E peut étre représenté sur le plan par une fleche allant de A vers B.

Exemple :
Soient A et B deux points distincts du plan tels ci-contre. p

Le vecteur ﬁ est la translation qui transforme le point A en B. L

AB

Le point A est 'origine du vecteur /@ et le point B est 'extrémité du vecteur ﬁ
Le vecteur zﬁ est défini par :

1. sa direction : la droite (AB) représenté en pointillé,
2. son sens : de A vers B représenté par la pointe de la fleche en rouge, ,
3. sa norme : la distance AB représenté par le segment en rouge.

Définition 6.2 : (Vecteurs égauz)
Soient A, B, C' et D quatre points du plan tels que A # B et C # D.

On dit que les vecteurs A§ et Clg sont égauz si et seulement s’ils ont la méme direction, le méme sens et la méme
norme.

On note alors :

AB = CD

Ainsi le vecteur xﬁ peut étre représenté sur le plan par toute fleche ayant la méme direction, le méme sens et la

méme norme que Ag.

Exemple :

Soient A, B, C' et D quatre points du plan tels que A # B et C # D %
comme ci-contre. o
B 7

Les vecteurs /@ et @ sont égaux car ils ont la méme direction (la 7
droite (AB) est parallele a la droite (CD)), le méme sens (de A vers AB AB /D/
B et de C vers D) et la méme norme (AB = CD). 1B

A
On note donc : =

E:@ /// C

Ainsi le vecteur /@ peut étre représenté sur le plan par toute fleche .

ayant la méme direction, le méme sens et la méme norme que Ag.
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Définition 6.3 : (Vecteur nul)
Soit A un point du plan.

ﬁ
On appelle vecteur nul, noté 0, le vecteur ﬂ

Propriété 6.4 : (Parallélogramme et vecteurs égaur)

Soient A, B, C' et D quatre points du plan tels que A # B et C # D.

AB=CD < ABDC est un parallélogramme (éventuellement aplati).

Exemple :
Soient A, B, C et D quatre points du plan tels que A # B et C # D P
comme ci-contre. B
Les vecteurs ﬁ et @ sont égaux car ils ont la méme direction (la .
droite (AB) est paralléle a la droite (CD)), le méme sens (de A vers
B et de C vers D) et la méme norme (AB = CD).

Donc, le quadrilatere ABDC' est un parallélogramme. .

Définition 6.5 : (Représentant d’un vecteur)

Soient W un vecteur, A et B deux points du plan.

On dit que le vecteur /@ est un représentant du vecteur U si et seulement si :
AB =1

Ainsi, on notera généralement un vecteur par une lettre minuscule (exemple : 7) plutot que par un de ses réprésentants

Le)femple . AB ).

Exemple :
Soient A, B, C et D quatre points du plan tels que A # B et C # D %
comme ci-contre. B .-
Le vecteur zﬁ est un représentant du vecteur U car U = zﬁ -
Le vecteur CD est aussi un représentant du vecteur U car U = CD. K& D
A o
o C

Définition 6.6 : (Vecteur opposé)

Soient W un vecteur, A et B deux points du plan tels que U = xﬁ
=
On appelle vecteur opposé de 7, noté —7, le vecteur BA.

On note alors :

L

% = _AB=DBA
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Exemple :

Soient A et B deux points du plan tels que U = E comme ci-contre.

Le vecteur opposé de U est le vecteur — U = 71@ = ]Z}l

Ainsi, si x a pour origine le point A et pour extrémité le point B, alors ~d a pour

origine le point B et pour extrémité le point A.

Définition 6.7 : (Somme de vecteurs)
Soient ¥ et ¥ deux vecteurs, 4, B et C trois points du plan tels que U= zﬁ et ¥ = B?
On appelle somme des vecteurs U et 7, notée U + 7, le vecteur B

Exemple :

Soient A, B et C trois points du plan tels que @ = E et U = R
comme ci-contre.

La somme des vecteurs @ et ¥ est le vecteur @ + ¥ = ﬁ qui est le
résultat de la translation qui transforme le point A en B puis le point

Ben C.

Propriété 6.8 : (Soustraction de vecteurs)

Soient @ et ¥ deux vecteurs.
Soustraire par un vecteur revient a additionner par son vecteur opposé.

Ainsi on a :

L

Exemple :

U -7 =U+(-7)

Soient @ et ¥ deux vecteurs comme ci-desous.
Pour trouver le vecteur ¥ — 7, on commence par tracer le vecteur opposé de 7, Clest-a-dire — 7. Ensuite, on
additionne les vecteurs @ et — 7.

On obtient ainsi le vecteur @ — o.
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Propriété 6.9 : (Reégles de calculs sur les vecteurs)

Soient 7, T et W trois vecteurs.

 La somme de vecteurs est commutative c’est-a-dire : U + 0 = U + o
« La somme de vecteurs est associative c’est-a-dire : (U + )+ W = o + (U + )

N .72 N g
o La somme de vecteurs possede un élément neutre c’est-a-dire : 1+ 0=1
%
=0

I:, e Tout vecteur possede un élément symétrique c’est-a-dire : u + (77)

Propriété 6.10 : (Relation de Chasles)
Soient A, B et C trois points du plan.

On a:

AB + BC = AC

I
7

A AB+BC=AC ©

Y N
, S
y N

L

Exemple :

@ En utilisant la relation de Chasles, on peut par exemple simplifier ’expression suivante :

AB + BC +CD = AC + CD
— AD

@ On peut aussi simplifier des expressions plus complexes comme par exemple :

zﬁﬁ-@ﬁ-@-i-ﬁﬁ-ﬁ:ﬁﬁ-@ﬁ-ﬁﬂ-ﬁ
_ D+ B+ DF
_ 0D+ i+ BE
_i

@ Ou encore :

AB+BC-AC =T

Propriété 6.11 : (Somme de vecteurs de méme origine)

Soient A, B, C' et D tels que /@ et /ﬁ sont deux vecteurs ayant la méme origine A.
Ona:
zﬁ + ﬁ = ﬁ <= ABDC est un parallélogramme
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Exemple :

Soient A, B, C et D tels que E + ﬁ = B

On en déduit que le quadrilatere ABDC' est un parallélogramme et réciproquement.

Définition 6.12 : (Produit d’un vecteur par un scalaire)

Soient ¥ un vecteur, k € R et A et B deux points du plan tels que U = z@

On appelle produit du vecteur U par le scalaire k, noté k x U, le vecteur /ﬁ tel que :
e si k> 0, alors C est le point du plan tel que A, B et C sont alignés et AC =k x AB,
o sik <0, alors C est le point du plan tel que A, B et C sont alignés et AC' = |k| x AB,

e si k=0, alors C est le point tel que 1@ = 6> Autrement dit, C = A.

L

Exemple :

Soient ¥ un vecteur, k € R et A et B deux points du plan tels que U = z@ comme ci-dessous.

+LB
A

@ Si k = 2, alors le point C' est tel que A, B et C sont alignés dans le méme sens et AC' = 2 x AB. Ainsi, le

Vecteur2x7:2x1@:ﬁ.

G
A B
@ Si k = —1, alors le point C est tel que A, B et C sont alignés dans des sens opposés et AC =|—1| x AB = AB.
Ainsi, le vecteur —1 x U =—1x zﬁ = 1@
B
C A
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Chapitre 7

Valeur absolue et distance dans le plan

Définition 7.1 : (Encadrement décimal, amplitude)
Soient x € R, a € D et b € D tels que a < b.

On appelle encadrement décimal de x I'encadrement :

a<xz<b

_|2|n appelle amplitude de cet encadrement la valeur b — a.

Exemple :

0,01 0,01

\L
7\

1,4 141 V2 142

— A
—_— ¥

Un encadrement décimal de v/2 est par exemple :
1,40 < V2 < 1,42
L’amplitude de cet encadrement est 1,42 — 1,40 = 0, 02.

Définition 7.2 : (Valeur absolue)
Soit x € R.

On appelle valeur absolue de x, notée |x|, la distance entre x et 0.
Autrement dit, la valeur absolue de x est la fonction définie par :
T six >0

o] =
—x siz <0

L

Exemple :

@ La valeur absolue de 5 est |5| = 5 car la distance entre 5 et 0 est égale a 5.

@ La valeur absolue de -3 est | — 3| = —(—3) = 3 car la distance entre -3 et 0 est égale a 3.

Propriété 7.3 : (Propriétés de la valeur absolue)

Soient x et y deux réels.
e La valeur absolue est toujours positive ou nulle : 2| > 0
e La valeur absolue de 0 est nulle : |0] =0
 La valeur absolue d’un produit est le produit des valeurs absolues : |z X y| = |z| x |y|
|z

x
e La valeur absolue d’un quotient est le quotient des valeurs absolues : " = ﬂ (pour y # 0)
Y Yy

I:, o Inégalité triangulaire : |z + y| < |z| + |y
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Définition 7.4 : (Distance entre deux abscisses)
Soient 1 € R et 29 € R.

On appelle distance entre les abscisses w1 et xo, notée d(xy;xs), la valeur absolue de leur différence, c’est-a-dire :

d(fL'l;l‘z) = \iL'z - l‘l\

Exemple :
Soient A et B d’abscisses x4 = —2,65 et xg = 3,48. La distance entre les abscisses de A et B est :
AB =d(zp;2p) = |xp —xa| = 3,48 — (—2,65)| = |3,48 +2,65| = |6,13| = 6,13
6,13

A B

i

[
[
—2,65 3,48
Remarque : On aurait aussi pu calculer la distance entre les abscisses de A et B en faisant :
AB =BA=d(zp;za) =|za—2p|=|—2,66—3,48/ = | —6,13| =6,13

Propriété 7.5 : (Intervalle et valeur absolue)

Soient a € Ret r € R;.

@ L’ensemble des réels x tels que la distance entre x et a est inférieure a r vérifient :
dlz;a) <r < |z —a|<r <= a—r<z<a+r

ce qui correspond a 'intervalle [a — r;a + 7].

@ L’ensemble des réels z tels que la distance entre x et a est strictement inférieure a r vérifient :
dz;a) <r <= |z —da|<r <= a—r<z<a+r

ce qui correspond & lintervalle |a — r;a + 7|.

L

Exemple :
Soient a =2 et r =0, 5.

@ L’ensemble des réels z tels que la distance entre x et 2 est inférieure a 0,5 est 'intervalle :

d(z;2) < 0,5 < |x—2/<0,5
— 2-0,5<xr<2+0,5

— 1,5<r<2,5

c’est-a-dire 'intervalle [1,5;2, 5].

<o
ot

0,5

Y
A

]
]
1,5 2 2,5

—T A

@ L’ensemble des réels = tels que la distance entre x et 2 est strictement inférieure a 0,5 est 'intervalle :
d(z;2) < 0,5 <= |z —2|<0,5 <= 1,5<x<2,5

c’est-a-dire 'intervalle |1, 5; 2, 5[.
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v 0,5

0,5

1,5
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Chapitre 8

Fonctions (partie algébrique)

Propriété 8.1 : (Calcul de l'image)

Soient f une fonction définie sur son ensemble de définition Zf et a € Zy.
Pour calculer l’image de a par la fonction f, on remplace chaque occurrence de x dans 'expression de f(x) par la

valeur numérique de a puis on effectue les calculs. Ainsi, on obtient f(a).

Exemple :

Soit f la fonction définie sur 2y = R et par f(z) = 222 — 3z + 4.

@ Pour calculer I'image de 2 par la fonction f, on remplace chaque occurrence de x dans l'expression de f(x) par
2 puis on effectue les calculs :

f(2)=2x2>-3x2+4=8-6+4=6

Ainsi, 'image de 2 par la fonction f est égale a 6.

@ Pour calculer 'image de —1 par la fonction f, on remplace chaque occurrence de x dans 1’expression de f(x)

par —1 puis on effectue les calculs :
f(=1)=2x(-1)2=3x (-1)+4=2+3+4=9
Ainsi, 'image de —1 par la fonction f est égale a 9.

Propriété 8.2 : (Calculs des antécédants)

Soient f une fonction définie sur son ensemble de définition Z et b € R.

Pour calculer les antécédants de b par la fonction f, on résout 'équation f(z) = b dans Pensemble Z;.

Exemple :

Soit f la fonction définie sur Zy = R et par f(z) = 3z + 4.
@ Pour calculer les antécédants de 10 par la fonction f, on résout I’équation f(x) = 10 dans ’ensemble R :

flz)=10 <= 32 +4=10

< 3r+4—-4=10—4

<— 3x=6

— _0
3 3

< r=2

Ainsi, le seul antécédant de 10 par la fonction f est 2.

On conclue en donnant 'esemble des solutions : .7 = {2}.

@ Pour calculer les antécédants de 1 par la fonction f, on résout I’équation f(x) = 1 dans l’ensemble R :

flz)=1 < 3z+4=1
= Jx+4-4=1-4

<~ 3r=-3
3£ -3
3 3
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< r=-—1

Ainsi, le seul antécédant de 1 par la fonction f est —1.

On conclue en donnant ’esemble des solutions : .&° = {—1}.

Définition 8.3 : (Valeur interdite)

Soient f une fonction définie sur son ensemble de définition Z;.

On appelle valeur interdite de la fonction f toute valeur que la fonction f ne peut pas transformer.

Ainsi, si a est une valeur interdite de la fonction f, alors a ¢ Zy.

Exemple :
Soit f la fonction définie par f(x) = %
0 est une valeur interdite de la fonction f car on ne peut pas diviser par 0. en effet, f(0) = L n’existe pas et donc

0
0¢ 2.

Propriété 8.4 : (Régles élémentaires des valeurs interdites)

Dans R :

@ on ne peut pas diviser par 0;
®
[

Propriété 8.5 : (Calculs de l’ensemble de définition)

la racine carrée d’un nombre négatif n’existe pas.

Soient f une fonction définie par une expression algébrique.

Pour calculer l’ensemble de définition de la fonction f, on détermine les valeurs interdites de f en utilisant les

Lélgles élémentaires des valeurs interdites puis on en déduit I'ensemble de définition Z;.

Exemple :

@ Soit f la fonction définie par f(x) = %

Pour calculer I'ensemble de définition de la fonction f, on détermine les valeurs interdites de f.

On ne peut pas diviser par 0, donc le dénominateur x — 3 ne doit pas étre égal a 0 :
r—3#0 <= —-3+3#0+3
= xr#3
Ainsi, 3 est une valeur interdite de la fonction f. On en déduit que ’ensemble de définition de la fonction f est

tous les nombres réels sauf 3 :

Dy =R\ {3} =] — 00; 3[U]3; 400

(%) Soit g la fonction définie par g(z) = /5 — .
Pour calculer I'ensemble de définition de la fonction g, on détermine les valeurs interdites de g. La racine carrée
d’un nombre négatif n’existe pas, donc I'expression 5 — x doit étre positive ou nulle :
5—2x20 <= b5—-—2—-520-5
<~ —r>-5H
— —rx(—1)<=5x(-1)

<— xr<5bH
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Ainsi, tous les réels inférieurs ou égaux a 5 sont des valeurs autorisées pour la fonction g. On en déduit que

I’ensemble de définition de la fonction g est :
Dy =] — 0; 5]

Propriété 8.6 : (Appartenance d’un point a une courbe représentative)

Soient f une fonction définie sur son ensemble de définition Z¢, et € sa courbe représentative dans un repere.

Un point M (zar; yar) appartient & €5 si et seulement si f(zar) = ymr.

Exemple :

Soit f la fonction définie par f(z) = 22

— x4 1 et € sa courbe représentative dans un repere.
@ Pour savoir si le point A(1;2) appartient & %, on calcule f(1) :
fM=1*-1+1=1-1+1=1
Comme f(1) =1 # ya, le point A n’appartient pas a 6.
@ Pour savoir si le point B(2;3) appartient & €%, on calcule f(2) :
f2)=2>-2+1=4-2+1=3
Comme f(2) =3 = yp, le point B appartient a .
@ Pour savoir si le point C'(3;5) appartient & €%, on calcule f(3) :
f3)=3"-3+1=9-3+1=7

Comme f(3) =7 # yc, le point C' n’appartient pas a 6.

Définition 8.7 : (Tableau de valeurs)

Soit f une fonction définie sur son ensemble de définition Z;.

On appelle Tableau de valeurs d'une fonction f un tableau présentant des valeurs de I’ensemble de définition Z;

et les images correspondantes par la fonction f.

Exemple :
Soit f la fonction définie par f(z) = 22 — 2z + 3.
Pour construire un tableau de valeurs de la fonction f on choisie arbitrairement des valeurs x € Z¢, on calcule les

images correspondantes puis on remplit le tableau suivant :

x| —2|-1]0|1/2|3|4]5
fe)y || 11] 6 [3]2]3|6][11]18

Propriété 8.8 : (Construction d’une courbe représentative)

Soit f une fonction définie sur son ensemble de définition Zy.
Pour construire la courbe représentative de la fonction f, on construit un tableau de valeurs de f en choisissant
arbitrairement autant de valeurs * € 9y que nécessaire puis on place les points correspondants dans un repéere et on

relie ces points par une courbe lisse.
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Exemple :
En reprenant ’exemple précédent, on commence par anticiper 1’échelle du repere en identifiant les valeurs minimales
et maximales des abscisses et des ordonnées a partir du tableau de valeurs. Ici, les abscisses varient de —2 a 5 et les

ordonnées de 2 a 18. Ensuite, on construit la courbe représentative ¢ de la fonction f définie par f(z) = 22 — 22+ 3 :

f(z)
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Chapitre 9

Repérage dans le plan

Définition 9.1 : (Repére cartésien)

On appelle repére cartésien d’un plan un triplet de points O, I et J non alignés dans ce plan. On note (O; 1, J) ce

repere, avec :

@ O l'origine du repere;

@ I le point unitaire de l’axe des abscisses;
@ Ol la longueur unité de l’axe des abscisses;
@ (OI) 'aze des abscisses;

@ J le point unitaire de l’axe des ordonnées;

@ OJ la longueur unité de l’axe des ordonnées;

|:.® (

Définition 9.2 : (Coordonnées d’un point)

OJ) l'aze des ordonnées .

Soit (O; 1, J) un repére cartésien.
Pour tout point M du plan, on appelle coordonnées de M dans le repére (O; 1, J) 'unique couple de nombres
(zar,ynr) avec :

@ xy abscisse de M ;
®
L5

Définition 9.3 : (Repére orthogonal, repére normé, repére orthonormé)

ynm Vordonnée de M.

On appelle repére orthogonal un repeére cartésien dans lequel les axes des abscisses et des ordonnées sont
perpendiculaires.

On appelle repére normé un repére cartésien dans lequel les longueurs unités des axes des abscisses et des ordonnées
sont égales.

On appelle repére orthonormé (ou repére orthonormal) un repére cartésien qui est a la fois orthogonal et
gl)rmé.

Exemple :

Repere : Repére orthogonal :
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Repére normé :

Propriété 9.4 : (Mileu d’un segment)

=

Exemple :

M <:m +2p ya+ys

2 ' 2

Repere orthonormé :

Tt

Soient (O;1,J) un repére et A(xa;y4) et B(zp;yp) deux points du plan.

Les coordonnées du milieu M du segment [AB] sont données par la formule suivante :

)

Soient A(2;3), B(4;7) et C(—1;2) deux points du plan dans le repere (O; 1, J).

Les coordonnées du milieu M; du segment [AB] sont données par la formule suivante :

2+4 3+7
(25555 =)

Les coordonnées du milieu My du segment [AC] sont données par la formule suivante :

1.5
2'2

Les coordonnées du milieu M5 du segment [BC] sont données par la formule suivante :

2 )

(rnTery_y,

(7:3)
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Propriété 9.5 : (Longueur d’un segment)

Soient (O;1,J) un repére et A(xa;ya) et B(zp;yp) deux points du plan.

La longueur du segment [AB], notée AB, est donnée par la formule suivante :

AB = /(x5 —24)%+ (yp — ya)?

Exemple :
Soient A(2;3), B(4;7) et C'(—1;2) trois points du plan dans un repére (O;1,.J).

La longueur du segment [AB] est :

AB = /(zp —x4)2+ (yp — ya)?

(
(4—2)2 + (7 3)2

&

22 4 42

Il I
N
&Cﬂ

La longueur du segment [AC] est :

AC = \/(QCC —24)%+ (yc —ya)?
(-

1-2)2+ (2-3)2

La longueur du segment [BC| est :
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Chapitre 10

Fonctions affines

Définition 10.1 : (Fonction affine)
Soient a € R et b € R deux constantes.

On appelle fonction affine toute fonction f définie sur R par une expression de la forme :
f(z) =az+b

Le nombre a est appelé le coefficient directeur de la fonction affine f.

Le nombre b est appelé I’ordonnée a l’origine de la fonction affine f.

Exemple
f(z) = 3z 4+ 2 est une fonction affine de coefficient directeur 3 et d’ordonnée a 'origine 2.
g(x) = —bx + 7 est une fonction affine de coefficient directeur —5 et d’ordonnée a ’origine 7.

()
h(z) = 1z — /2 est une fonction affine de coefficient directeur 1 et d’ordonnée a l'origine —v/2.
()

= —z est une fonction affine de coeflicient directeur —1 et d’ordonnée a l'origine 0.

m(z) = 4 est une fonction affine de coefficient directeur 0 et d’ordonnée a l'origine 4.

n(z) = 2 + 4 n’est pas une fonction affine car I'expression de n(z) n'est pas de la forme az + b.

p(x) = 2% + 3 n’est pas une fonction affine car expression de p(x) n’est pas de la forme ax + b.

q(x) = /T — 1 n’est pas une fonction affine car 'expression de ¢(z) n’est pas de la forme ax + b.

x) = v/3x + 2 n’est pas une fonction affine car 'expression de r(z) n’est pas de la forme ax + b.

r(
s(z) = V/3x + /2 est une fonction affine de coefficient directeur v/3 et d’ordonnée & I'origine v/2.

ONONONORONORONORORONO,

t(x) = V3z + /2 n’est pas une fonction affine car 'expression de #(z) n’est pas de la forme ax + b.

Propriété 10.2 : (Courbe représentative d’une fonction affine)

Soient a € R et b € R deux constantes.

Soit f une fonction affine définie par f(x) = ax + b.

La courbe représentative ¢y de la fonction affine f est une droite.

Cette droite passe par le point de coordonnées (0;b) appellé ordonnée a l’origine et son coefficient directeur «

détermine l'inclinaison de la droite par rapport a I’axe des abscisses :

@ si a > 0, la droite € est croissante;

@ si a < 0, la droite € est décroissante;

@ si a = 0, la droite €5 est horizontale.

A partir d’'un point de la droite, on peut utiliser le coefficient directeur pour déterminer un second point de la

variation des ordonnées
variation des abscisses

droite en utilisant le fait que a = : pour une variation des abscisses de 1 unité, la variation des

ordonnées est égale a a unités.

Exemple :

@ Soit f1 une fonction affine définie par fi(x) = 2z + 3.
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L’ordonnée a 'origine de f; est 3 donc la courbe représentative de fi est une droite passant par le point (0;3)
et de coefficient directeur 2. Pour tracer cette droite, on peut partir du point (0;3) et utiliser le coefficient
directeur pour trouver un second point : en avancant de 1 unité sur ’axe des abscisses, on avance de 2 unités

sur l’axe des ordonnées. Ainsi, le point (1;5) appartient a la droite.

3 -2 1 1 2 3 4 5

@ Soit f une fonction affine définie par fo(x) = —z + 1.
L’ordonnée a 'origine de f5 est 1 donc la courbe représentative de f2 est une droite passant par le point (0;1)
et de coefficient directeur —1. Pour tracer cette droite, on peut partir du point (0;1) et utiliser le coefficient
directeur pour trouver un second point : en avancant de 1 unité sur I'axe des abscisses, on recule de 1 unité sur

Paxe des ordonnées. Ainsi, le point (1;0) appartient a la droite.

fa(z)
2 1
+1
1_
(0;1)
~1
. . . X
‘ Yy ‘ ‘
—1 (1;0)1 2 3
_1 |1

@ Soit f3 une fonction affine définie par f3(x) = 4.
L’ordonnée a l'origine de f35 est 4 et le coefficient directeur est 0, donc la courbe représentative de f3 est une

droite horizontale passant par le point (0;4).
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@ Soit f4 une fonction affine définie par fi(z) = 3z + 1.
L’ordonnée a l'origine de fy est 1 donc la courbe représentative de f, est une droite passant par le point (0;1)
et de coefficient directeur %. Pour tracer cette droite, on peut partir du point (0;1) et utiliser le coefficient
directeur pour trouver un second point : en avancant de 4 unités sur ’axe des abscisses, on avance de 3 unités

sur I’axe des ordonnées. Ainsi, le point (4;4) appartient a la droite.

9 1 1 2 3 4 5 6

Propriété 10.3 : (Variation d’une fonction affine)

Soient a € R et b € R deux constantes.

Soit f une fonction affine définie par f(z) = ax + b.

@ Sia > 0 alors f est strictement croissante sur R. Le tableau de variation de f est le suivant :

x —00 —+00

! /

—00

+00

@ Sia < 0 alors f est strictement décroissante sur R . Le tableau de variation de f est le suivant :

x —00 —+00

x —00 “+0oo

L

Exemple :
Soit f définie par f(z) = 2z + 1.

Le coefficient directeur de f est 2 qui est strictement positif donc f est strictement croissante sur R. Le tableau de
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variation de f est le suivant :

—+00

On peut comparer avec la courbe représentative de f :

@/
3 %y
2 £
1 i
-2 -1 1 2 3 4
—14+

Propriété 10.4 : (Tableau de signe d’une fonction affine)

Soient a € R* et b € R deux constantes.
Soit f une fonction affine définie par f(x) = ax + b.
b

L’équation f(x) = 0 admet pour solution » = — 7.

Le signe de la fonction affine f dépend du signe de son coefficient directeur « :

@ Si a > 0, le tableau de signe de f est le suivant :

T —00 fg +o0
f - 0 +

@ Si a < 0, le tableau de signe de f est le suivant :
x —00 —g +00
f + 0 -

L

Preuve :
Soient a € R* et b € R deux constantes.

Soit f une fonction affine définie par f(z) = ax + b. L’équation f(z) = 0 s’écrit :

ar+b=0
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En soustrayant b des deux membres, on obtient :
ar = —b

En divisant les deux membres par a (qui est non nul), on obtient :

b
a’

Ainsi, équation f(z) = 0 admet pour solution = = —

Le signe de la fonction affine f dépend du signe de son coefficient directeur « :

@ Sia >0, alors f est strictement croissante sur R (propriété |10.3).

Ainsi, pour z < —2, ona f(z)< f (—3) =0etpourz>—2 ona f(z) > f (—g) =0.

a’

Le tableau de signe de f est donc le suivant :

@ Sia <0, alors f est strictement décroissante sur R (propriété [10.3)).
Ainsi, pour z < 72, ona f(x)>f (73) =0 et pour z > 73, ona f(z)< f (fg) =0.

Le tableau de signe de f est donc le suivant :

Qo
_|_
g

Exemple :
Soit f définie par f(z) = —3z + 6.

Le coefficient directeur de f est —3 et 'ordonnée a l'origine est 6 donc la fonction s’annule pour :

Comme le coefficient directeur est strictement négatif, le tableau de signe de f est le suivant :

x —00 2 —+00
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Chapitre 11

Evolutions et pourcentages

Définition 11.1 : (Coefficient multiplicateur)

Soient une valeur initiale V; € R et une valeur finale Vy € R.

On appelle coefficient multiplicateur le nombre C); tel que :

VF = VIXCM

xCy

L

Exemple :

Une montre cotite 150 euros en janvier. En juin, elle cotite 180 euros. On a donc le schéma suivant :

XC]\{
150 180

On peut déterminer le coefficient multiplicateur :

Ve =V xCy < 180 =150 x Cyy
150
150

— Cy=1,2

— Cy =

Donc le prix de la montre a été multiplié par 1,2 entre janvier et juin.

Définition 11.2 : (Variation absolue)

|_\2|n appelle variation absolue la différence Vi — V; entre une valeur finale Vi et une valeur initiale V7.

Exemple :
Reprenons 'exemple de la montre qui cotite 150 euros en janvier et 180 euros en juin.

La variation absolue du prix de la montre entre janvier et juin est :
Ve —Vr =180 — 150 = 30
Donc le prix de la montre a augmenté de 30 euros entre janvier et juin.

Définition 11.3 : (Taux d’évolution)

On appelle tauzx d’évolution (ou variation relative), noté t, le quotient entre la variation absolue Vg — V7 et la

valeur initiale V7. On a donc :
V=V

t
Vi

XCM

Vi ~ Vi
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Propriété 11.4 : (Augmentation ou diminition)

Soient une valeur initiale V; € R et une valeur finale Vr € R.
Le taux d’évolution ¢ permet de déterminer si la valeur finale Vp est une augmentation ou une diminution par

rapport a la valeur initiale V7 :
@ Sit >0, alors Vi > V; et la valeur finale est une augmentation de t.

@ Sit <0, alors Vp < V7 et la valeur finale est une diminution de |t|.

Exemple :

Sit=0,alors Vi =V} et il n’y a pas de variation.

@ Reprenons 'exemple de la montre qui cotite 150 euros en janvier et 180 euros en juin.

Le taux d’évolution du prix de la montre entre janvier et juin est :

Ve =V
W
180 — 150

150
30

150

t

0,2 x 100

100
20

100
=20%

Donc le prix de la montre a une augmentation de 20% entre janvier et juin.

@ Un sac coiite 80 euros en magasin A et 60 euros en magasin B.

Le taux d’évolution du prix du sac entre le magasin A et le magasin B est :

Vr=V
Vi
60 — 80

80
—20

80
—0,25

—-0,25 x 1

100
— 0,25 x —
22X 100

—0,25 x 100

100
—25

100
—25%

Donc le prix du sac a une diminution de 25% entre le magasin A et le magasin B.
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Propriété 11.5 : (Coefficient multiplicateur et tauz d’évolution)

Soient t le taux d’évolution et C; le coefficient multiplicateur entre une valeur initiale et une valeur finale.

On a la relation suivante entre le taux d’évolution t et le coefficient multiplicateur Cj; :

L

Exemple :

En connaissant le taux d’évolution ¢, on peut déterminer le coefficient multiplicateur Cj; a l'aide de la relation

Cy =1+t

De méme, en connaissant le coefficient multiplicateur Cps, on peut déterminer le taux d’évolution t a I’aide de la

relation ¢t = Cyy — 1.

Cuy=1+t

<~

t=Cy —1

Taux d’évolution ¢ | Coeflicient multiplicateur Cj,

10% 1+ 46 =1,1
1,2-1=0,2=20% 1,2
30% 1+ 3% =13

1,87 —1=0,87=87T% 1,87
100% 1+ 152 =2

3—1=200% 3

—-10% 1+ 5 =0,9

0,75 — 1 =—0,25 = —25% 0,75
—37% 1+ 33 =0,63
0,5—-1=-0,5=—-50% 0,5
~100% 1+ 550 =0

Propriété 11.6 : (Erreur classique des tauz d’évolutions)

Une augmentation du taux d’évolution ¢ suivie d’'une diminution du méme taux d’évolution ¢t ne ramene pas a la

valeur initiale.

Exemple :
Un éleéve posseéde 10 euros. Il regoit une augmentation de 10% de son argent :
Donc le coefficient multiplicateur C; est donné par :

10
— 14— =11
Cu=1+155="1

Le nouveau montant Vg est donc donné par :

VF:V]XCM:10X1,1:11

Donc apres une augmentation de 10%, 1’éleve posseéde 11 euros.

Si ensuite le prix diminue de 10%, le nouveau coefficient multiplicateur C)y, est donné par :
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Le nouveau montant Vg, est donc donné par :
VF2 =Vp X CM2 =11x0,9=9,9

Donc apres une augmentation de 10% puis une diminution de 10%, le montant possédé par I’éleve est de 9,90 euros et

non pas de 10 euros.

Propriété 11.7 : (Evolution réciproque)

Soient une valeur initiale V; € R, une valeur finale Vir € R et C); le coefficient multiplicateur entre Vi et V.
Le coefficient multiplicateur C;, de I’évolution réciproque est donnée par la relation suivante :

1

CAL. — CiM

XCM ><C’M

W = [

+Cu xChr,

L

Exemple :
En reprenant ’exemple précédent, un éleve posséde 10 euros. Il regoit une augmentation de 10% de son argent :
Donc le coefficient multiplicateur Cj; est donné par :

10
Cy=14—=1,1
M=1+355=h

Le nouveau montant Vx est donc donné par :
VF:V]XOM:10X1,1=11

Donc apres une augmentation de 10%, 1’éleve possede 11 euros.
Pour retrouver la valeur initiale de 10 euros, il faut appliquer une évolution réciproque avec le coefficient multiplicateur
Chy, donné par :

OM = ———= — _

1 1 10
T COn 1,10 11

Ce qui correspond & un taux dévolution de :

10 10—-11 -1
= — —1= = — X — ~ —
= - -~ —0,0909 ~ —9,09%

t=Cuy, —1

Donc une diminution d’environ 9,09%.
Le nouveau montant V7, est donc donné par :

10
VIQZVFXCMT=11><H:10:VI

Donc apres une évolution réciproque, ’éléve possede 10 euros, ce qui correspond a la valeur initiale.
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Propriété 11.8 : (Fvolutions successives)

Soient une valeur initiale V; € R, une valeur intermédiaire V; € R, une valeur finale Vz € R et Cir,,Chr, les
coefficients multiplicateurs des évolutions successives entre Vi et Vi puis entre Vi et Vp.

Le coefficient multiplicateur C); de I’évolution globale est donnée par la relation suivante :

Cy = Cur, X Cap,y

xC M

L

Exemple :
Une marchandise cofite 100 euros. Son prix augmente de 8% puis baisse de 7%.

Le coefficient multiplicateur Cjy, de la premiere évolution est donné par :

8
Cpp =14 — =1.08
My =14 955 =1

Le coefficient multiplicateur Cy, de la deuxieme évolution est donné par
7
Cy,=1——=0,93
Mz 100
Le coefficient multiplicateur Cp; de 1’évolution globale est donc donné par :
Cy = OM1 X C’M2 = 1,08 X 0,93 = 1,0044
Ce qui correspond a un taux d’évolution de :

t=Cp—1=1,0044 — 1 =0,0044 = 0,44%

Donc le prix de la marchandise a augmenté de 0,44% apres les deux évolutions successives.

Son nouveau prix Vg est donc donné par :
Vi =V x Cp =100 x 1,0044 = 100, 44

Donc apres les deux évolutions successives, la marchandise cotite 100, 44 euros.

x1,0044
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Chapitre 12

Calculs des vecteurs

Définition 12.1 : (Base)

. —= — .,
Soient i et j deux vecteurs non colinéaires du plan.

- =
On appelle base du plan le couple de vecteurs ( i )

Exemple :

—
J
—
JL \/
J =

—
7

— — s -
Dans chaque cas, les vecteurs ¢ et j ne sont pas colinéaires donc le couple ( i ) est une base du plan.

Définition 12.2 : (Combinaison linéaire)

- = - =
Soient i et j deux vecteurs du plan tel que ( 157 ) soit une base du plan.

On dit que U est une combinaison linéaire des deux vecteurs i et 7, ¢’il existe deux réels x et y tels que :

- =
U=ui +yy

Exemple
Dans ce repere, le vecteur 7 est une combinaison linéaire
i —
,,,,, 1o ... desvecteurs ¢ et j carona:
— -
u =217 + 4
,,,,, . -
—
J
% >~ % % % %
o —&
7 .

Théoréme 12.3 : (Ezxistence et unicité de la combinaison linéaire)

- = - =
Soient i et j deux vecteurs du plan tel que ( 157 ) soit une base du plan.

Tout vecteur ¥ du plan possede une unique combinaison linéaire des deux vecteurs i et j .

Autrement dit, soit 7}1@ I’ensemble des vecteurs du plan, on a :

VU € 7]1@27 WNasy) €R?, W = 27 + y7

L
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Dans ce repere, le vecteur U ne possede pas plusieurs

combinaisons linéaires des vecteurs i et j .

Définition 12.4 : (Coordonnées d’un vecteurs)

- =
Soient i et j deux vecteurs du plan tel que ( j ) soit une base du plan et soit W un vecteur du plan.

) )
. -
On appelle coordonnées de U dans la base ( i ) le couple de réels (x;y) tel que :

On note alors :

L

Exemple :

— S
/l -
- = - =
Dans la base ( i3] ) le vecteur U a pour combinai- Dans la base < i3] ) le vecteur ¥ a pour combinai-
son linéaire : son linéaire :
- = - =
U =27 4+4j T =-37—-1j
- — - =
Donc les coordonnées de 7 dans la base ( 57 ) sont : Donc les coordonnées de @ dans la base ( i;j ) sont :
2 -3
U = 7 =
4 -1
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Propriété 12.5 : (Coordonnées d’un représentant de vecteur)

Les coordonnées du vecteur Ag sont données par :

I — XA

Y —yYa

Soit A(za;ya) et B(xp;yp) deux points du plan et soit @ le vecteur dirigé de A vers B.

Soient les points A(2;3) et B(—1;4).

Les coordonnées du vecteur A§ sont données par :

nla ().
1‘7':: \ 7777777777 43
37 A
"""" oF
J :
O 7::

Propriété 12.6 : (Caractérisation de l'égalité de deux vecteurs par les coordonnées)

Deux vecteurs sont égaux si et seulement si ils ont les mémes coordonnées.

Autrement dit, soient U et U deux vecteurs du plan tels que :

gors U = U si et seulement si T = X9 et Yy = ys.

Exemple :
Soient A(0;3), B(3;4), C(—2;1) et D(1;2).
Les coordonnées des vecteurs ﬁ et C"[—S sont données par :

E: 3—-0 _ ot @: 1-(-2) _ 3

4—-3 1 2-1 1 - ; ,,,,,,,,,, 3 ,,,,,

Donc les vecteurs A§ et C 3 ont les mémes coordonnées.

-3
1

Donc 1@ = @

Y
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Propriété 12.7 : (Coordonnées d’une somme de vecteurs)

- —
Soit un repere du plan (O; i3] ) et soient U et ¥ deux vecteurs du plan tels que :

Alors les coordonnées du vecteur i + ¢ sont données par :

T+
7 + 7 _ 1 2
Y1+ Y2
Exemple :
Soient les vecteurs @ et U tels que :
-1 2
7 = et 7 =
4 3

Les coordonnées du vecteur @ + ¢ sont données par :

—1+2 1
4+3 7

Propriété 12.8 : (Coordonnées d’un produit d’un vecteur par un scalaire)

- =
Soit un repere du plan (O; 137 >7 soit @ un vecteur du plan et soit £ € R un scalaire tels que :
x
=
Y
Alors les coordonnées du vecteur k1 sont données par :
kx
kd =
ky
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Exemple :

Soit le vecteur U tel que :

3
ﬁ =
-2
Les coordonnées du vecteur 27/ sont données par :
2x3 6
2U = =
2x(-2) —4

Propriété 12.9 : (Norme d’une vecteur)

- —
Soit un repere orthonormé du plan (O; 157 ) et soit ¥ un vecteur du plan tel que :

T

0 =

Alors la norme du vecteur U est donnée par :

L

Exemple :

Soit le vecteur U tel que :

2= (? I
4

La norme du vecteur U est donnée par :

||| =V32+42=V9+16=Vv25=5
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Chapitre 13

Fonctions de référence

Définition 13.1 : (Fonction de référence)

On appelle fonction de référence toute fonction étudiée pour sa simplicité, son exemplarité ou afin de servir de

modele pour d’autres fonctions plus complexes.

Définition 13.2 : (Fonction carrée)

On appelle fonction carrée la fonction f définie sur R par :

[z~ z?

L

Propriété 13.3 : (Courbe représentative de la fonction carrée)

La courbe représentative de la fonction carrée dans un repére orthonormé est une parabole (ayant approximativement
la forme d’un U dont les branches s’écarteraient indéfiniment) dont le sommet est le point O(0;0) et qui est

symétrique par rapport a I’axe des ordonnées.

)
4 A4
3| @
2 A4
1 41
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ X
I:l -4 -3 -2 -1 1 2 3 4

Propriété 13.4 : (Variations de la fonction carrée)

La fonction carrée est décroissante sur | — 0o; 0] et croissante sur [0; +o00[. Son tableau de variations est :

T —00 0 +00
+00 00
0
Preuve :
Le but est d’étudier toutes les variations possible de f dans son ensemble de définition 2y = R =] — oo; +00].
Pour cela on peut couper 1'étude en deux parties : | — 0o; 0] et [0; +00[ (ce raisonnement s’appelle le raisonnement

par disjonction de cas).
() Pour z €] — 00;0] :

Soient x1 et xo deux réels tels que z1 < x2 < 0.
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On a alors :

f(z1) = f(x2) = 95% *95%
= (x1 — x2)(x1 + 22)
Comme z1 < 22, 0n a :
T, — T2 <0
De plus, comme 21 < 0 et x5 < 0 et que 1 < 29, 0n a :
T+ 22 <0
Donc par regles du signe d’un produit :
(x1 —x2)(x1 +22) >0
Autrement dit :
f(@1) = f(z2) >0
Ce qui donne finalement :
f(@1) > f(z2)

Donc d’apres la définition la fonction f est strictement décroissante sur | — oco;0].
() Pour z € [0; 400 :
Soient z1 et xo deux réels tels que 0 < 1 < xo.

On a alors :

f(z1) = f(x2) = x% _333
= (z1 — m2) (71 + 22)
Comme z1 < Z3, 0n a :

T —To <0
De plus, comme z; > 0 et 29 > 0, et que 1 < x3, on a :
1 +x2 >0
Donc par régles du signe d’un produit :
(1 —x2)(z1+22) <O

Autrement dit :

f(@1) = f(x2) <O
Ce qui donne finalement :
fx1) < f(22)
Donc d’aprés la définition la fonction f est strictement croissante sur [0; +ool.

Conclusion : La fonction carrée est décroissante sur | — oo; 0] et croissante sur [0; +00].

Définition 13.5 : (Fonction cube)

On appelle fonction cube la fonction f définie sur R par :
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Propriété 13.6 : (Courbe représentative de la fonction cube)

La courbe représentative de la fonction cube dans un repere orthonormé est une courbe passant par 1'origine du

repere et qui est symétrique par rapport a ’origine.

L

Propriété 13.7 : (Variations de la fonction cube)

La fonction cube est strictement croissante sur R. Son tableau de variations est :

L

Preuve :

Soient 1 € R et x5 € R tels que =1 < 5.

On a alors :

= (1 — 1’2)({E% 4+ 2129 + x%)
Comme x1 < x3, 0n a :

T, — 29 <0

De plus on a :
2 2 r2\? 3 2
T} + 21T + 15 = (xl + 7) + Z(xg —x1)* >0
Donc :
2 2
]+ T2 25 >0
Donc par regles du signe d’un produit :

(x1 — xg)(xf + 179 + x%) <0

Autrement dit :

fx1) = f(x2) <O
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Ce qui donne finalement :

f(x1) < f(z2)

g)nc d’apres la définition la fonction f est strictement croissante sur R.

Définition 13.8 : (Fonction inverse)

On appelle fonction inverse la fonction f définie sur R* par :

1
fro— —
.

L

Propriété 13.9 : (Courbe représentative de la fonction inverse)

La courbe représentative de la fonction inverse dans un repere orthonormé est une hyperbole passant par les points
(1,1) et (—1,—1) et qui est symétrique par rapport a l’origine.
Yy
3 A4

L

Propriété 13.10 : (Variations de la fonction inverse)

La fonction inverse est strictement décroissante sur | — 0o; 0[ et strictement décroissante sur |0; +oo[. Son tableau de

variations est :

L

Preuve :
Appliquons le raisonnement par disjonction de cas pour étudier les variations de la fonction f dans son

ensemble de définition 7y = R* =] — co; 0[U]0; +o00].
@ Montrons que la fonction f est strictement décroissante sur | — oo; 0].

Soient 1 € R* et x5 € R* | c’est-a-dire tels que x1 < x2 < 0.

On a alors : L L
f(z1) = f(x2) = ;1—;2
o X9 — I

n X192

68



Comme z1 < Z3, 0n a :

xr9 —x1 >0

De plus, comme 1 < 0 et 5 <0, on a :

x1T9 > 0

Donc par regles du signe d’un quotient :
T2 — Ty

T1T2
Autrement dit :

fl@1) = fz2) >0
Ce qui donne finalement :
f(@1) > f(x2)
Donc d’apres la définition la fonction f est strictement décroissante sur | — oco; 0[.

@ Montrons que la fonction f est strictement décroissante sur ]0; +oo.

Soient z1 € R} et x5 € RY, c’est-a-dire tels que 0 < 1 < x.

On a alors : . .
f(x1) = f(x2) = ;1—;2
- Xro — X1

o T1X9

Comme z1 < x3, 0n a :

o —x1 >0

De plus, comme z; > 0 et x5 > 0, 0on a :

x1x2 >0

Donc par régles du signe d’un quotient :
T2 — X1
T1T2

Autrement dit :
f(z1) = f(z2) >0

Ce qui donne finalement :

fxr) > f(x2)
|:, Donc d’aprés la définition la fonction f est strictement décroissante sur |0; 4-o0].

Définition 13.11 : (Fonction racine carrée)

On appelle fonction racine carrée la fonction f définie sur Ry par :

framVa

L
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Propriété 13.12 : (Courbe représentative de la fonction racine carrée)

La courbe représentative de la fonction racine carrée dans un repere orthonormé est une demi-parabole située dans

le premier quadrant du repére et passant par le point O(0;0).

y
21 &,

L

Propriété 13.13 : (Variations de la fonction racine carrée)

La fonction racine carrée est strictement croissante sur R;. Son tableau de variations est :

x 0 —+00

s -

+00

o

L

Preuve :
Soient x1 € Ry et o € Ry, c’est-a-dire tels que 0 < 1 < x».

On a alors :
f(@1) = fla2) = Var — Ve
(V1 — 22) (V1 + V/Z2) car \/zy ++/x2 >0

Comme x1 < Zg, 0n a :

De plus, comme 1 > 0 et 9 > 0, 0on a :

\/l‘1+\/£>0

Donc par regles du signe d’un quotient :
r1 — T2

— <0
V1 + /T2
Autrement dit :

f(x1) = f(x2) <O

Ce qui donne finalement :

f(z1) < f(z2)

g‘)nc d’apres la définition la fonction f est strictement croissante sur R .
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Définition 13.14 : (Fonction valeur absolue)

On appelle fonction valeur absolue la fonction f définie sur R par :

T siz >0
frav o =
—x siz <0

L

Propriété 13.15 : (Courbe représentative de la fonction valeur absolue)

La courbe représentative de la fonction valeur absolue dans un repere orthonormé est formée de deux demi-droites
perpendiculaires se coupant a ’origine du repere.
Y
4 41
3 A4
Cr
2 A4
1 A4
|:I -4 -3 -2 -1 1 2 3 4

Propriété 13.16 : (Variations de la fonction valeur absolue)

La fonction valeur absolue est décroissante sur | — oo; 0] et croissante sur [0; +00[. Son tableau de variations est :

x —00 0 —+00

“+00 +00

L

Preuve :
Appliquons le raisonnement par disjonction de cas pour étudier les variations de la fonction f dans son

ensemble de définition 75 = R =| — oo; 400].
@ Montrons que la fonction f est décroissante sur | — oo; 0].
Soient x1 et xo deux réels tels que z1 < x2 < 0.

On a alors :

f(@1) = f(z2) = [21]| — |22
= —z1 — (—22)
=x9— 14
Comme z1 < x2, 0n a :

To —x1 >0

Donc :

f(x1) = f(z2) >0
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Autrement dit :

f(x1) > f(22)
Donc d’apres la définition la fonction f est strictement décroissante sur | — oo;0].
Montrons que la fonction f est croissante sur [0; +o00].

Soient z1 et zo deux réels tels que 0 < 1 < xs.

On a alors :

f(@1) = f(x2) = |aa] — [
=1 — X2

Comme z1 < x3, 0n a :

T, — 22 <0

Donc :

fx1) — f(22) <O

Autrement dit :

f(x1) < f(z2)

Donc d’apres la définition la fonction f est strictement croissante sur [0; +oo].
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